10 research outputs found

    Soil stabilization using waste fiber materials

    Get PDF
    The main objective of this study is to investigate the use of waste fiber materials in geotechnical applications and to evaluate the effects of waste polypropylene fibers on shear strength of unsaturated soil by carrying out direct shear tests and unconfined compression tests on two different soil samples. The results obtained are compared for the two samples and inferences are drawn towards the usability and effectiveness of fiber reinforcement as a replacement for deep foundation or raft foundation, as a cost effective approach

    A Review Paper on Emotion Recognition Using Facial Expression

    Get PDF
    Facial expressions are the quickest means that of communication whereas transference any kind of info. These do not seem to be solely exposes the sensitivity or feelings of anyone, however, may be wont to choose his/her mental views. This paper includes the introduction of the face recognition associate in nursing face expression recognition and an investigation on the recent previous researches for extracting the effective and economical technique for face expression recognition

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≀0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Comparison between efficacy of turbine handpiece vs conventional motor handpiece in surgical removal of impacted third molar: A review

    No full text
    Lower third molar extraction is one of the most common surgical procedure performed in oral surgery but despite the surgical skills and expertise, complications are likely. These can be pain, swelling, bleeding, infection, fracture of adjacent tooth and nerve damage et cetra. One of the most essential armamentarium necessary for removal of impacted third molar is a handpiece with a bur used for removal of bone surrounding the tooth or odontectomy. This is usually done using a straight motor driven handpiece rotating at an approximate speed of 30,000 RPM. However, because of the low speed and torque the time taken in extraction can increase significantly making the procedure hectic and fatiguing for the patient a well as the surgeon. Air turbine handpiece is a precision device which can be used for removal of tooth tissue with reasonably less pressure, heat or vibration thus making the cutting facile, less demanding and less time consuming. However, the fear of Subcutaneous emphysema associated with it’s use due to expulsion if air from the air turbine limit it’s use. Although rare, iatrogenic subcutaneous emphysema can have grave and potentially life-threatening consequences.&nbsp

    Comparison Between Efficacy of Turbine Handpiece Vs Conventional Motor Handpiece in Surgical Removal of Impacted Third Molar: A Review

    Full text link
    Lower third molar extraction is one of the most common surgical procedure performed in oral surgery but despite the surgical skills and expertise, complications are likely. These can be pain, swelling, bleeding, infection, fracture of adjacent tooth and nerve damage et cetra. One of the most essential armamentarium necessary for removal of impacted third molar is a handpiece with a bur used for removal of bone surrounding the tooth or odontectomy. This is usually done using a straight motor driven handpiece rotating at an approximate speed of 30,000 RPM. However, because of the low speed and torque the time taken in extraction can increase significantly making the procedure hectic and fatiguing for the patient a well as the surgeon. Air turbine handpiece is a precision device which can be used for removal of tooth tissue with reasonably less pressure, heat or vibration thus making the cutting facile, less demanding and less time consuming. However, the fear of Subcutaneous emphysema associated with it's use due to expulsion if air from the air turbine limit it's use. Although rare, iatrogenic subcutaneous emphysema can have grave and potentially life-threatening consequences.&nbsp

    Proceedings of the International Conference on Frontiers in Desalination, Energy, Environment and Material Sciences for Sustainable Development

    No full text
    This proceeding contains articles on the various ideas of the academic community presented at the International Conference on Frontiers in Desalination, Energy, Environment and Material Sciences for Sustainable Development (FEEMSSD-2023) & Annual Congress of InDA (InDACON-2023) jointly organized by the Madan Mohan Malaviya University of Technology Gorakhpur, KIPM-College of Engineering and Technology Gida Gorakhpur, and Indian Desalination Association, India on 16th-17th March 2023.  FEEMSSD-2023 & InDACON-2023 focuses on addressing issues and concerns related to sustainability in all domains of Energy, Environment, Desalination, and Material Science and attempts to present the research and innovative outputs in a global platform. The conference aims to bring together leading academicians, researchers, technocrats, practitioners, and students to exchange and share their experiences and research outputs in Energy, Environment, Desalination, and Material Science.  Conference Title: International Conference on Frontiers in Desalination, Energy, Environment and Material Sciences for Sustainable Development & Annual Congress of InDAConference Acronyms: FEEMSSD-2023 & InDACON-2023Conference Date: 16th-17th March 2023Conference Location: Madan Mohan Malaviya University of Technology, GorakhpurConference Organizers: Madan Mohan Malaviya University of Technology Gorakhpur, KIPM-College of Engineering and Technology Gida Gorakhpur, and Indian Desalination Association, Indi

    Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo

    No full text
    International audienceIntermediate-mass black holes (IMBHs) span the approximate mass range 100−105 M⊙, between black holes (BHs) that formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic gravitational-wave sources accessible by the terrestrial detector network. Searches of the first two observing runs of Advanced LIGO and Advanced Virgo did not yield any significant IMBH binary signals. In the third observing run (O3), the increased network sensitivity enabled the detection of GW190521, a signal consistent with a binary merger of mass ∌150 M⊙ providing direct evidence of IMBH formation. Here, we report on a dedicated search of O3 data for further IMBH binary mergers, combining both modeled (matched filter) and model-independent search methods. We find some marginal candidates, but none are sufficiently significant to indicate detection of further IMBH mergers. We quantify the sensitivity of the individual search methods and of the combined search using a suite of IMBH binary signals obtained via numerical relativity, including the effects of spins misaligned with the binary orbital axis, and present the resulting upper limits on astrophysical merger rates. Our most stringent limit is for equal mass and aligned spin BH binary of total mass 200 M⊙ and effective aligned spin 0.8 at 0.056 Gpc−3 yr−1 (90% confidence), a factor of 3.5 more constraining than previous LIGO-Virgo limits. We also update the estimated rate of mergers similar to GW190521 to 0.08 Gpc−3 yr−1.Key words: gravitational waves / stars: black holes / black hole physicsCorresponding author: W. Del Pozzo, e-mail: [email protected]† Deceased, August 2020
    corecore