5 research outputs found

    Kyberturvallisuuden pilviportaalien kautta tehtävät reagoivat vastatoimet

    No full text
    Kyberuhkia ei voida täydellisesti poistaa ja täysin suojattu järjestelmä ei ole mahdollinen, kun järjestelmä yhdistetään Internetiin tai mihin tahansa muuhun verkkojärjestelmään. Tietoturvavalvomoilla on tärkeä rooli organisaatioissa kyberuhkien yleistyessä. Tietoturvavalvomo mahdollistaa reaaliaikaisen uhkien havainnoinnin, nopean reagoinnin poikkeamiin ja riskien hallinnan. Opinnäytetyön toimeksiantajana oli Insta Advance Oy. Opinnäytetyön tehtävänä oli kartoittaa kyberturvallisuuden pilviportaalien kautta tehtäviä reagoivia vastatoimia ja niiden teknistä toteutusta. Työn tavoitteena oli kehittää tietoturvavalvomon reagoivaa toimintaa ja luoda ohjeistus vastatoimiin eri tilanteissa. Luotujen ohjeiden avulla pienennetään vasteaikaa tapahtumien reagointiin. Lisäksi ohjeiden tarkoitus on vahvistaa oikeanlaista ja samalla tehokasta toimintaa kutakin havaittua poikkeamaa kohtaan. Opinnäytetyön tietoperustassa tarkasteltiin tietoturvavalvomon toimintaa, pilvipalveluiden tietoturvaa, Microsoftin pilvipalveluita, poikkeamienhallintaa sekä pelikirjoja. Käytännön osuudessa kartoitettiin Microsoftin pilviportaaleissa tehtäviä vastatoimia sekä varmistettiin niiden toiminnallisuus käytännössä testityöasemalla ja testikäyttäjällä. Testauksien ja havaintojen pohjalta luotiin pelikirja vastatoimien suorittamiseen. Työn tuloksena syntyi ohjeistus vastatoimiin taulukkomallisena pelikirjana. Taulukkomallinen pelikirja piti ohjeet järjestelmällisinä ja selkeinä. Pelikirjaa on myös tärkeää pitää ajan tasalla uusien havaintojen ja oppien pohjalta, jotta tapahtumiin reagointi pysyy tehokkaana.Cyber threats cannot completely be eliminated, and achieving a fully secure system is not possible when the system is connected to the Internet or any other network. Security Operations Center plays a crucial role in organizations as cyber threats become more prevalent. Security Operations Center provides real-time threat detection, quick response to anomalies and effective risk management. The thesis was commissioned by Insta Advance Oy, with the task of mapping reactive countermeasures through cybersecurity portals and their technical implementation. The objective was to enhance the reactive actions of the Security Operations Center and create guidelines for responding to various situations. The created guidelines aim to reduce response time to incidents and reinforce the appropriate and effective actions for each detected anomaly. In the theoretical part of the thesis, the functioning of Security Operations Center, cloud service security, Microsoft’s cloud services, anomaly management, and playbooks were examined. In the practical part, countermeasures in Microsoft’s cloud portals were identified and their functionality was verified through practical testing on a test workstation and with a test user. Based on testing and observations, a playbook for performing countermeasures was created. As a result of the thesis, guidelines for countermeasures were developed in the form of a tabular playbook. The tabular playbook was chosen to keep the instructions systematic and clear. It is crucial to keep the playbook up-to-date based on new observations and learnings to ensure effective response to incidents

    Measurement of the 2+→0+ ground-state transition in the β decay of 20F

    Get PDF
    We report the first detection of the second-forbidden, nonunique, 2+→0+, ground-state transition in the β decay of 20F. A low-energy, mass-separated 20F+ beam produced at the IGISOL facility in Jyväskylä, Finland, was implanted in a thin carbon foil and the β spectrum measured using a magnetic transporter and a plastic-scintillator detector. The β-decay branching ratio inferred from the measurement is bβ=[0.41±0.08(stat)±0.07(sys)]×10−5 corresponding to logft=10.89(11), making this one of the strongest second-forbidden, nonunique β transitions ever measured. The experimental result is supported by shell-model calculations and has significant implications for the final evolution of stars that develop degenerate oxygen-neon cores. Using the new experimental data, we argue that the astrophysical electron-capture rate on 20Ne is now known to within better than 25% at the relevant temperatures and densities.peerReviewe

    The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease

    Get PDF
    Fil: El-Sayed, Najib M. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Myler, Peter J. Seattle Biomedical Research Institute; Estados Unidos.Fil: Bartholomeu, Daniella C. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Nilsson, Daniel. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Aggarwal, Gautam. Seattle Biomedical Research Institute; Estados Unidos.Fil: Tran, Anh-Nhi. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Ghedin, Elodie. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Worthey, Elizabeth A. Seattle Biomedical Research Institute; Estados Unidos.Fil: Delcher, Arthur L. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Blandin, Gaëlle. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Westenberger, Scott J. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Caler, Elisabet. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Cerqueira, Gustavo C. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Haas, Carole Branched Brian. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Anupama, Atashi. Seattle Biomedical Research Institute; Estados Unidos.Fil: Arner, Erik. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Åslund, Lena. Uppsala University. Department of Genetics and Pathology; Suecia.Fil: Attipoe, Philip. Seattle Biomedical Research Institute; Estados Unidos.Fil: Bontempi, Esteban. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Parasitología; Argentina.Fil: Bringaud, Frédéric. Université Victor Segalen Bordeaux II. Laboratoire de Génomique Fonctionnelle des Trypanosomatides; Francia.Fil: Burton, Peter. University of Glasgow. Wellcome Centre for Molecular Parasitology; Reino Unido.Fil: Cadag, Eithon. Seattle Biomedical Research Institute; Estados Unidos.Fil: Campbell, David A. University of California. Department of Microbiology; Estados Unidos.Fil: Carrington, Mark. University of Cambridge. Department of Biochemistry; Reino Unido.Fil: Crabtree, Jonathan. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Darban, Hamid. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Silveira, Jose Franco da. Universidade Federal de Sao Paulo. Departamento de Microbiologia; Brasil.Fil: Jong, Pieter de. Children’s Hospital Oakland Research Institute. BACPAC Resources; Estados Unidos.Fil: Edwards, Kimberly. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Englund, Paul T. Johns Hopkins University School of Medicine. Department of Biological Chemistry; Estados Unidos.Fil: Fazelina, Gholam. Seattle Biomedical Research Institute; Estados Unidos.Fil: Feldblyum, Tamara. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Ferella, Marcela. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Frasch, Alberto Carlos. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina.Fil: Gull, Keith. University of Oxford. Sir William Dunn School of Pathology; Reino Unido.Fil: Horn, David. London School of Hygiene and Tropical Medicine; Reino Unido.Fil: Hou, Lihua. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Huang, Yiting. Seattle Biomedical Research Institute; Estados Unidos.Fil: Kindlund, Ellen. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Klingbeil, Michele. University of Massachusetts. Department of Microbiology; Estados Unidos.Fil: Kluge, Sindy. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Koo, Hean. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Lacerda, Daniela. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Levin, Mariano J. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-CYTED project). Laboratorio de Biología Molecular de la Enfermedad de Chagas; Argentina.Fil: Lorenzi, Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-CYTED project). Laboratorio de Biología Molecular de la Enfermedad de Chagas; Argentina.Fil: Louie, Tin. Seattle Biomedical Research Institute; Estados Unidos.Fil: Machado, Carlos Renato. Universidade Federal de Minas Gerais. Departamento de Bioquímica e Imunologia; Brasil.Fil: McCulloch, Richard. University of Glasgow. Wellcome Centre for Molecular Parasitology; Reino Unido.Fil: McKenna, Alan. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Mizuno, Yumi. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Mottram, Jeremy C. University of Glasgow. Wellcome Centre for Molecular Parasitology; Reino Unido.Fil: Nelson, Siri. Seattle Biomedical Research Institute; Estados Unidos.Fil: Ochaya, Stephen. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Osoegawa, Kazutoyo. Children’s Hospital Oakland Research Institute. BACPAC Resources; Estados Unidos.Fil: Pai, Grace. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Parsons, Marilyn. Seattle Biomedical Research Institute; Estados Unidos.Fil: Pentony, Martin. Seattle Biomedical Research Institute; Estados Unidos.Fil: Pettersson, Ulf. Uppsala University. Department of Genetics and Pathology; Suecia.Fil: Pop, Mihai. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Ramirez, Jose Luis. Universidad Central de Venezuela. Instituto de Biología Experimental; Venezuela.Fil: Rinta, Joel. Seattle Biomedical Research Institute; Estados Unidos.Fil: Robertson, Laura. Seattle Biomedical Research Institute; Estados Unidos.Fil: Salzberg, Steven L. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Sanchez, Daniel O. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina.Fil: Seyler, Amber. Seattle Biomedical Research Institute; Estados Unidos.Fil: Sharma, Reuben. University of Cambridge. Department of Biochemistry; Reino Unido.Fil: Shetty, Jyoti. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Simpson, Anjana J. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Sisk, Ellen. Seattle Biomedical Research Institute; Estados Unidos.Fil: Tammi, Martti T. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Tarleton, Rick. University of Georgia. Center for Tropical and Emerging Global Diseases; Estados Unidos.Fil: Teixeira, Santuza. Universidade Federal de Minas Gerais. Departamento de Bioquímica e Imunologia; Brasil.Fil: Aken, Susan Van. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Vogt, Christy. Seattle Biomedical Research Institute; Estados Unidos.Fil: Ward, Pauline N. University of Glasgow. Wellcome Centre for Molecular Parasitology; Reino Unido.Fil: Wickstead, Bill. University of Oxford. Sir William Dunn School of Pathology; Reino Unido.Fil: Wortman, Jennifer. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: White, Owen. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Fraser, Claire M. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Stuart, Kenneth D. Seattle Biomedical Research Institute; Estados Unidos.Fil: Andersson, Björn. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Whole-genome sequencing of the protozoan pathogen Trypanosoma cruzi revealed that the diploid genome contains a predicted 22,570 proteins encoded by genes, of which 12,570 represent allelic pairs. Over 50% of the genome consists of repeated sequences, such as retrotransposons and genes for large families of surface molecules, which include trans-sialidases, mucins, gp63s, and a large novel family (>1300 copies) of mucin-associated surface protein (MASP) genes. Analyses of the T. cruzi, T. brucei, and Leishmania major (Tritryp) genomes imply differences from other eukaryotes in DNA repair and initiation of replication and reflect their unusual mitochondrial DNA. Although the Tritryp lack several classes of signaling molecules, their kinomes contain a large and diverse set of protein kinases and phosphatases; their size and diversity imply previously unknown interactions and regulatory processes, which may be targets for intervention

    The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease

    Get PDF
    Fil: El-Sayed, Najib M. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Myler, Peter J. Seattle Biomedical Research Institute; Estados Unidos.Fil: Bartholomeu, Daniella C. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Nilsson, Daniel. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Aggarwal, Gautam. Seattle Biomedical Research Institute; Estados Unidos.Fil: Tran, Anh-Nhi. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Ghedin, Elodie. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Worthey, Elizabeth A. Seattle Biomedical Research Institute; Estados Unidos.Fil: Delcher, Arthur L. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Blandin, Gaëlle. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Westenberger, Scott J. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Caler, Elisabet. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Cerqueira, Gustavo C. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Haas, Carole Branched Brian. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Anupama, Atashi. Seattle Biomedical Research Institute; Estados Unidos.Fil: Arner, Erik. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Åslund, Lena. Uppsala University. Department of Genetics and Pathology; Suecia.Fil: Attipoe, Philip. Seattle Biomedical Research Institute; Estados Unidos.Fil: Bontempi, Esteban. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Parasitología; Argentina.Fil: Bringaud, Frédéric. Université Victor Segalen Bordeaux II. Laboratoire de Génomique Fonctionnelle des Trypanosomatides; Francia.Fil: Burton, Peter. University of Glasgow. Wellcome Centre for Molecular Parasitology; Reino Unido.Fil: Cadag, Eithon. Seattle Biomedical Research Institute; Estados Unidos.Fil: Campbell, David A. University of California. Department of Microbiology; Estados Unidos.Fil: Carrington, Mark. University of Cambridge. Department of Biochemistry; Reino Unido.Fil: Crabtree, Jonathan. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Darban, Hamid. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Silveira, Jose Franco da. Universidade Federal de Sao Paulo. Departamento de Microbiologia; Brasil.Fil: Jong, Pieter de. Children’s Hospital Oakland Research Institute. BACPAC Resources; Estados Unidos.Fil: Edwards, Kimberly. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Englund, Paul T. Johns Hopkins University School of Medicine. Department of Biological Chemistry; Estados Unidos.Fil: Fazelina, Gholam. Seattle Biomedical Research Institute; Estados Unidos.Fil: Feldblyum, Tamara. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Ferella, Marcela. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Frasch, Alberto Carlos. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina.Fil: Gull, Keith. University of Oxford. Sir William Dunn School of Pathology; Reino Unido.Fil: Horn, David. London School of Hygiene and Tropical Medicine; Reino Unido.Fil: Hou, Lihua. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Huang, Yiting. Seattle Biomedical Research Institute; Estados Unidos.Fil: Kindlund, Ellen. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Klingbeil, Michele. University of Massachusetts. Department of Microbiology; Estados Unidos.Fil: Kluge, Sindy. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Koo, Hean. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Lacerda, Daniela. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Levin, Mariano J. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-CYTED project). Laboratorio de Biología Molecular de la Enfermedad de Chagas; Argentina.Fil: Lorenzi, Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-CYTED project). Laboratorio de Biología Molecular de la Enfermedad de Chagas; Argentina.Fil: Louie, Tin. Seattle Biomedical Research Institute; Estados Unidos.Fil: Machado, Carlos Renato. Universidade Federal de Minas Gerais. Departamento de Bioquímica e Imunologia; Brasil.Fil: McCulloch, Richard. University of Glasgow. Wellcome Centre for Molecular Parasitology; Reino Unido.Fil: McKenna, Alan. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Mizuno, Yumi. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Mottram, Jeremy C. University of Glasgow. Wellcome Centre for Molecular Parasitology; Reino Unido.Fil: Nelson, Siri. Seattle Biomedical Research Institute; Estados Unidos.Fil: Ochaya, Stephen. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Osoegawa, Kazutoyo. Children’s Hospital Oakland Research Institute. BACPAC Resources; Estados Unidos.Fil: Pai, Grace. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Parsons, Marilyn. Seattle Biomedical Research Institute; Estados Unidos.Fil: Pentony, Martin. Seattle Biomedical Research Institute; Estados Unidos.Fil: Pettersson, Ulf. Uppsala University. Department of Genetics and Pathology; Suecia.Fil: Pop, Mihai. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Ramirez, Jose Luis. Universidad Central de Venezuela. Instituto de Biología Experimental; Venezuela.Fil: Rinta, Joel. Seattle Biomedical Research Institute; Estados Unidos.Fil: Robertson, Laura. Seattle Biomedical Research Institute; Estados Unidos.Fil: Salzberg, Steven L. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Sanchez, Daniel O. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina.Fil: Seyler, Amber. Seattle Biomedical Research Institute; Estados Unidos.Fil: Sharma, Reuben. University of Cambridge. Department of Biochemistry; Reino Unido.Fil: Shetty, Jyoti. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Simpson, Anjana J. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Sisk, Ellen. Seattle Biomedical Research Institute; Estados Unidos.Fil: Tammi, Martti T. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Fil: Tarleton, Rick. University of Georgia. Center for Tropical and Emerging Global Diseases; Estados Unidos.Fil: Teixeira, Santuza. Universidade Federal de Minas Gerais. Departamento de Bioquímica e Imunologia; Brasil.Fil: Aken, Susan Van. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Vogt, Christy. Seattle Biomedical Research Institute; Estados Unidos.Fil: Ward, Pauline N. University of Glasgow. Wellcome Centre for Molecular Parasitology; Reino Unido.Fil: Wickstead, Bill. University of Oxford. Sir William Dunn School of Pathology; Reino Unido.Fil: Wortman, Jennifer. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: White, Owen. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Fraser, Claire M. The Institute for Genomic Research. Department of Parasite Genomics; Estados Unidos.Fil: Stuart, Kenneth D. Seattle Biomedical Research Institute; Estados Unidos.Fil: Andersson, Björn. Karolinska Institutet. Center for Genomics and Bioinformatics; Suecia.Whole-genome sequencing of the protozoan pathogen Trypanosoma cruzi revealed that the diploid genome contains a predicted 22,570 proteins encoded by genes, of which 12,570 represent allelic pairs. Over 50% of the genome consists of repeated sequences, such as retrotransposons and genes for large families of surface molecules, which include trans-sialidases, mucins, gp63s, and a large novel family (>1300 copies) of mucin-associated surface protein (MASP) genes. Analyses of the T. cruzi, T. brucei, and Leishmania major (Tritryp) genomes imply differences from other eukaryotes in DNA repair and initiation of replication and reflect their unusual mitochondrial DNA. Although the Tritryp lack several classes of signaling molecules, their kinomes contain a large and diverse set of protein kinases and phosphatases; their size and diversity imply previously unknown interactions and regulatory processes, which may be targets for intervention

    The genome of the kinetoplastid parasite, Leishmania major

    Get PDF
    Leishmania species cause a spectrum of human diseases in tropical and subtropical regions of the world. We have sequenced the 36 chromosomes of the 32.8-megabase haploid genome of Leishmania major (Friedlin strain) and predict 911 RNA genes, 39 pseudogenes, and 8272 protein-coding genes, of which 36% can be ascribed a putative function. These include genes involved in host-pathogen interactions, such as proteolytic enzymes, and extensive machinery for synthesis of complex surface glycoconjugates. The organization of protein-coding genes into long, strand-specific, polycistronic clusters and lack of general transcription factors in the L. major, Trypanosoma brucei, and Trypanosoma cruzi (Tritryp) genomes suggest that the mechanisms regulating RNA polymerase II–directed transcription are distinct from those operating in other eukaryotes, although the trypanosomatids appear capable of chromatin remodeling. Abundant RNA-binding proteins are encoded in the Tritryp genomes, consistent with active posttranscriptional regulation of gen
    corecore