6,069 research outputs found

    Brane World in a Topological Black Hole Bulk

    Get PDF
    We consider a static brane in the background of a topological black hole, in arbitrary dimensions. For hyperbolic horizons, we find a solution only when the black hole mass assumes its minimum negative value. In this case, the tension of the brane vanishes, and the brane position coincides with the location of the horizon. For an elliptic horizon, we show that the massless mode of Randall-Sundrum is recovered in the limit of large black hole mass.Comment: Latex, 8 pages, v2: Additional references, to appear in MPL

    Linear Sigma EFT for Nearly Conformal Gauge Theories

    Get PDF
    We construct a generalized linear sigma model as an effective field theory (EFT) to describe nearly conformal gauge theories at low energies. The work is motivated by recent lattice studies of gauge theories near the conformal window, which have shown that the lightest flavor-singlet scalar state in the spectrum (σ\sigma) can be much lighter than the vector state (ρ\rho) and nearly degenerate with the PNGBs (π\pi) over a large range of quark masses. The EFT incorporates this feature. We highlight the crucial role played by the terms in the potential that explicitly break chiral symmetry. The explicit breaking can be large enough so that a limited set of additional terms in the potential can no longer be neglected, with the EFT still weakly coupled in this new range. The additional terms contribute importantly to the scalar and pion masses. In particular, they relax the inequality Mσ23Mπ2M_{\sigma}^2 \ge 3 M_{\pi}^2, allowing for consistency with current lattice data.Comment: 9 pages, 1 figure, published versio

    Stealth Dark Matter: Dark scalar baryons through the Higgs portal

    Get PDF
    We present a new model of "Stealth Dark Matter": a composite baryonic scalar of an SU(ND)SU(N_D) strongly-coupled theory with even ND4N_D \geq 4. All mass scales are technically natural, and dark matter stability is automatic without imposing an additional discrete or global symmetry. Constituent fermions transform in vector-like representations of the electroweak group that permit both electroweak-breaking and electroweak-preserving mass terms. This gives a tunable coupling of stealth dark matter to the Higgs boson independent of the dark matter mass itself. We specialize to SU(4)SU(4), and investigate the constraints on the model from dark meson decay, electroweak precision measurements, basic collider limits, and spin-independent direct detection scattering through Higgs exchange. We exploit our earlier lattice simulations that determined the composite spectrum as well as the effective Higgs coupling of stealth dark matter in order to place bounds from direct detection, excluding constituent fermions with dominantly electroweak-breaking masses. A lower bound on the dark baryon mass mB300m_B \gtrsim 300 GeV is obtained from the indirect requirement that the lightest dark meson not be observable at LEP II. We briefly survey some intriguing properties of stealth dark matter that are worthy of future study, including: collider studies of dark meson production and decay; indirect detection signals from annihilation; relic abundance estimates for both symmetric and asymmetric mechanisms; and direct detection through electromagnetic polarizability, a detailed study of which will appear in a companion paper.Comment: 15 pages, 3 figures, citations added, typos fixed, minor clarification

    Proteasome Lid Bridges Mitochondrial Stress with Cdc53/Cullin1 NEDDylation Status

    Get PDF
    Cycles of Cdc53/Cullin1 rubylation (a.k.a NEDDylation) protect ubiquitin-E3 SCF (Skp1-Cullin1-F-box protein) complexes from self-destruction and play an important role in mediating the ubiquitination of key protein substrates involved in cell cycle progression, development, and survival. Cul1 rubylation is balanced by the COP9 signalosome (CSN), a multi-subunit derubylase that shows 1:1 paralogy to the 26 S proteasome lid. The turnover of SCF substrates and their relevance to various diseases is well studied, yet, the extent by which environmental perturbations influence Cul1 rubylation/derubylation cycles per se is still unclear. In this study, we show that the level of cellular oxidation serves as a molecular switch, determining Cullin1 rubylation/derubylation ratio. We describe a mutant of the proteasome lid subunit, Rpn11 that exhibits accumulated levels of Cullin1-Rub1 conjugates, a characteristic phenotype of csn mutants. By dissecting between distinct phenotypes of rpn11 mutants, proteasome and mitochondria dysfunction, we were able to recognize the high reactive oxygen species (ROS) production during the transition of cells into mitochondrial respiration, as a checkpoint of Cullin1 rubylation in a reversible manner. Thus, the study adds the rubylation cascade to the list of cellular pathways regulated by redox homeostasis

    Lattice simulations with eight flavors of domain wall fermions in SU(3) gauge theory

    Get PDF
    We study an SU(3) gauge theory with Nf=8 degenerate flavors of light fermions in the fundamental representation. Using the domain wall fermion formulation, we investigate the light hadron spectrum, chiral condensate and electroweak S parameter. We consider a range of light fermion masses on two lattice volumes at a single gauge coupling chosen so that IR scales approximately match those from our previous studies of the two- and six-flavor systems. Our results for the Nf=8 spectrum suggest spontaneous chiral symmetry breaking, though fits to the fermion mass dependence of spectral quantities do not strongly disfavor the hypothesis of mass-deformed infrared conformality. Compared to Nf=2 we observe a significant enhancement of the chiral condensate relative to the symmetry breaking scale F, similar to the situation for Nf=6. The reduction of the S parameter, related to parity doubling in the vector and axial-vector channels, is also comparable to our six-flavor results

    Simultaneous Dependence of the Earthquake-Size Distribution on Faulting Style and Depth

    Get PDF
    We analyze two high-quality Southern Californian earthquake catalogues, one with focal mechanisms, to statistically model and test for dependencies of the earthquake-size distribution, the b values, on both faulting style and depth. In our null hypothesis, b is assumed constant. We then develop and calibrate one model based only on faulting style, another based only on depth dependence and two models that assume a simultaneous dependence on both parameters. We develop a new maximum-likelihood estimator corrected for the degrees of freedom to assess models' performances. Our results show that all models significantly reject the null hypothesis. The best performing is the one that simultaneously takes account of depth and faulting style. Our results suggest that differential stress variations in the Earth's crust systematically influence b values and that this variability should be considered for contemporary seismic hazard studies

    Molecular dynamics simulations of elementary chemical processes in liquid water using combined density functional and molecular mechanics potentials. I. Proton transfer in strongly H-bonded complexes

    Get PDF
    The first molecular dynamics (MD) simulation of a chemical process in solution with an ab initio description of the reactant species and a classical representation of the solvent is presented. We study the dynamics of proton (deuterium) transfer in strongly hydrogen-bonded systems characterized by an energy surface presenting a double well separated by a low activation barrier. We have chosen the hydroxyl-water complex in liquid water to analyze the coupling between the reactive system and the environment. The proton is transferred from one well to the other with a frequency close to 1 ps−1 which is comparable to the low-frequency band associated to hindered translations, diffusional translation and reorientation of water molecules in water. The proton transfer takes place in 20–30 fs whereas the solvent response is delayed by about 50 fs. Therefore, the reaction occurs in an essentially frozen-solvent configuration. In principle, this would produce a barrier increase with respect to the equilibrium reaction path. However, solvent fluctuations play a substantial role by catalyzing the proton transfer. The solvent relaxation time after proton transfer has been evaluated. Since it falls in the same time scale than the reactive events (0.6 ps) it substantially influences the proton dynamics. The present study is intended to model charge transfer processes in polar media having a low activation barrier for which many reactive events may be predicted in a MD simulation. The case of reactions with large activation barriers would require the use of special techniques to simulate rare events. But still in that case, hybrid QM/MM simulations represent a suitable tool to analyze reaction dynamics and non-equilibrium solvent effects in solution [email protected]

    Comparison of physical, microstructural, antioxidant and enzymatic properties of pineapple cubes treated with conventional heating, ohmic heating and high-pressure processing

    Get PDF
    Pineapple cubes in sugar syrup were treated with high-pressure processing (HPP), conventional (DIM) heating and ohmic heating (OHM). Samples were compared in terms of microstructural, physical (total soluble solids, sieve analysis, texture and colour) and residual pectin methylesterase activity (PME) and total antioxidant capacity. OHM yielded relevant changes in cellular microstructure and electroporation of the cell wall. The HPP treatment favoured the presence of soluble solids in the syrup, and the samples were less damaged in terms of shape and microstructure. in the samples were harder following HPP than they were with OHM and DIM, while HPP showed the highest colorimetric (ΔE) differences compared with RAW samples. The PME residual activity was the lowest in pineapple treated by DIM, while the antioxidant capacity was comparable among treated samples
    corecore