78 research outputs found

    Highly-branched poly(N-isopropyl acrylamide)s with core-shell morphology below the lower critical solution temperature

    Get PDF
    YesHighly-branched poly(N-isopropyl acrylamide)s in water pass through coil-to-globule transitions. Using calorimetry and the colour change of a solvatochromic dye within the polymer, we show that some compositions have biphasic core–shell morphologies, with globular cores and open coil shells. The two-phase structure is favoured by increased branching and arises because the chain ends penetrate only to a limited degree into the polymer coil

    Angle selective backscattered electron contrast in the low-voltage scanning electron microscope: simulation & experiment for polymers

    Get PDF
    Recently developed detectors can deliver high resolution and high contrast images of nanostructured carbon based materials in low voltage scanning electron microscopes (LVSEM) with beam deceleration. Monte Carlo Simulations are also used to predict under which exact imaging conditions purely compositional contrast can be obtained and optimised. This allows the prediction of the electron signal intensity in angle selective conditions for back-scattered electron (BSE) imaging in LVSEM and compares it to experimental signals. Angle selective detection with a concentric back scattered (CBS) detector is considered in the model in the absence and presence of a deceleration field, respectively. The validity of the model prediction for both cases was tested experimentally for amorphous C and Cu and applied to complex nanostructured carbon based materials, namely a Poly(N-isopropylacrylamide)/Poly(ethylene glycol) Diacrylate (PNIPAM/PEGDA) semi-interpenetration network (IPN) and a Poly(3-hexylthiophene-2,5-diyl) (P3HT) film, to map nano-scale composition and crystallinity distribution by avoiding experimental imaging conditions that lead to a mixed topographical and compositional contrast

    Angle selective backscattered electron contrast in the low-voltage scanning electron microscope: Simulation and experiment for polymers

    Get PDF
    AbstractRecently developed detectors can deliver high resolution and high contrast images of nanostructured carbon based materials in low voltage scanning electron microscopes (LVSEM) with beam deceleration. Monte Carlo Simulations are also used to predict under which exact imaging conditions purely compositional contrast can be obtained and optimised. This allows the prediction of the electron signal intensity in angle selective conditions for back-scattered electron (BSE) imaging in LVSEM and compares it to experimental signals. Angle selective detection with a concentric back scattered (CBS) detector is considered in the model in the absence and presence of a deceleration field, respectively. The validity of the model prediction for both cases was tested experimentally for amorphous C and Cu and applied to complex nanostructured carbon based materials, namely a Poly(N-isopropylacrylamide)/Poly(ethylene glycol) Diacrylate (PNIPAM/PEGDA) semi-interpenetration network (IPN) and a Poly(3-hexylthiophene-2,5-diyl) (P3HT) film, to map nano-scale composition and crystallinity distribution by avoiding experimental imaging conditions that lead to a mixed topographical and compositional contras

    Separating topographical and chemical analysis of nanostructure of polymer composite in low voltage SEM

    Get PDF
    The possibility of separating the topographical and chemical information in a polymer nano-composite using low-voltage SEM imaging is demonstrated, when images are acquired with a Concentric Backscattered (CBS) detector. This separation of chemical and topographical information is based on the different angular distribution of electron scattering which were calculated using a Monte Carlo simulation. The simulation based on angular restricted detection was applied to a semi-branched PNIPAM/PEGDA interpenetration network for which a linear relationship of topography SEM contrast and feature height data was observed

    Selective Exposure to Berita Harian Online and Utusan Malaysia Online: The Roles of Surveillance Motivation, Website Usability and Website Attractiveness

    Get PDF
    News media allows audiences to be selective in determining both their news sources and type of news stories they read. This study examined factors influencing selective exposure to the online editions of two mainstream Malaysian newspapers, Berita Harian and Utusan Malaysia. Using selective exposure theory as the theoretical lens, this study compared both newspapers in terms of their audiences’ level of surveillance motivation, and how audiences rate the newspapers’ websites with respect to usability and attractiveness. This study used a within-subject experimental research design that exposed 51 subjects to both Berita Harian and Utusan Malaysia online newspapers. The results of the experiment indicate that Berita Harian and Utusan Malaysia online were significantly different in terms of website usability; however, no significant differences were found in terms of surveillance motivation or website attractiveness between the two newspapers. Further analysis indicate that the only significant predictor of selective exposure was website usability. This study highlights the importance of website usability for online newspapers wanting to harness audience selectivity

    Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel

    Get PDF
    A major use of the 1000 Genomes Project (1000GP) data is genotype imputation in genome-wide association studies (GWAS). Here we develop a method to estimate haplotypes from low-coverage sequencing data that can take advantage of single-nucleotide polymorphism (SNP) microarray genotypes on the same samples. First the SNP array data are phased to build a backbone (or 'scaffold') of haplotypes across each chromosome. We then phase the sequence data 'onto' this haplotype scaffold. This approach can take advantage of relatedness between sequenced and non-sequenced samples to improve accuracy. We use this method to create a new 1000GP haplotype reference set for use by the human genetic community. Using a set of validation genotypes at SNP and bi-allelic indels we show that these haplotypes have lower genotype discordance and improved imputation performance into downstream GWAS samples, especially at low-frequency variants. © 2014 Macmillan Publishers Limited. All rights reserved
    corecore