4,197 research outputs found

    South Dakota\u27s Hutterite Colonies: 1874-1969

    Get PDF
    This publication is divided into three major parts. The first part attempts to answer such questions as Who are the Hutterites? What do they believe? and Where are they in South Dakota? The second part reports on the 1968 census of these communal farms and summarizes the sect\u27s enterprises and changes in farm operations. The third part presents a pictorial account of Poinsett Colony, one of the newest Hutterite colonies in South Dakota

    Thermodynamic model of electric-field-induced pattern formation in binary dielectric fluids

    Get PDF
    An electric-field-induced phase transition and pattern formation in a binary dielectric fluid layer are studied using a coarse-grained free-energy functional. The electrostatic part of the free energy is a nonlinear functional of the dielectric function, which depends in turn on the local colloidal concentration. We determine the phase coexistence curve and find that beyond a critical electric field the system phase separates. Accompanying the phase separation are patterns similar to those observed in a spinodal decomposition of an ordinary binary fluid. The temporal evolution of the phase separating patterns are discussed both analytically and numerically by integrating a Cahn-Hilliard type of equation

    Redox-Active Nanomaterials For Nanomedicine Applications

    Get PDF
    Nanomedicine utilizes the remarkable properties of nanomaterials for the diagnosis, treatment, and prevention of disease. Many of these nanomaterials have been shown to have robust antioxidative properties, potentially functioning as strong scavengers of reactive oxygen species. Conversely, several nanomaterials have also been shown to promote the generation of reactive oxygen species, which may precipitate the onset of oxidative stress, a state that is thought to contribute to the development of a variety of adverse conditions. As such, the impacts of nanomaterials on biological entities are often associated with and influenced by their specific redox properties. In this review, we overview several classes of nanomaterials that have been or projected to be used across a wide range of biomedical applications, with discussion focusing on their unique redox properties. Nanomaterials examined include iron, cerium, and titanium metal oxide nanoparticles, gold, silver, and selenium nanoparticles, and various nanoscale carbon allotropes such as graphene, carbon nanotubes, fullerenes, and their derivatives/variations. Principal topics of discussion include the chemical mechanisms by which the nanomaterials directly interact with biological entities and the biological cascades that are thus indirectly impacted. Selected case studies highlighting the redox properties of nanomaterials and how they affect biological responses are used to exemplify the biologically-relevant redox mechanisms for each of the described nanomaterials

    Chromosomal control of non-gliadin proteins from the 70% ethanol extract of wheat endosperm

    Full text link
    The non-gliadin fraction of the 70% ethanol extracts of compensated nulli-tetrasomics and ditelosomics of Triticum aestivum cv. Chinese Spring has been analyzed by combined electrofocusing and electrophoresis. Seventeen of the 21 protein map components of the euploid have been ascribed to eight chromosomes: 4A, 3BS, 6BS, 7BS, 3D, 4D, 5D and 7DS. The relationship of the different map components with other proteins previously associated with the same chromosomes is discusse

    Nudging down theft from insecure vehicles. A pilot study

    Get PDF
    This report presents the preliminary findings of a pilot study to reduce thefts from cars committed against insecure vehicles, using the behavioural insights or ‘nudge approach’. The recipients of the ‘nudges’ were potential victims of theft from insecure vehicles living in high rate areas for this crime, where a bespoke leaflet campaign was developed to nudge vehicle owners into thinking more carefully when leaving their vehicles unattended, particularly when left on their driveways overnight. Although somewhat tentative at this stage, the preliminary findings indicate that the percentage of thefts committed against insecure vehicles in the two treatment areas was reduced significantly when compared with the two control group areas where no nudge interventions were introduced. This demonstrates that if appropriate nudges (grounded in psychological theory) are coupled with and delivered by appropriate messengers, the prosocial behavioural change can be encouraged which can lead to a reduction in criminal behaviour and opportunities for crim

    Taxonomic shifts in arbuscular mycorrhizal fungal communities with shade and soil nitrogen across conventionally managed and organic coffee agroecosystems

    Get PDF
    The composition of arbuscular mycorrhizal fungal (AMF) communities should reflect not only responses to host and soil environments, but also differences in functional roles and costs vs. benefits among arbuscular mycorrhizal fungi. The coffee agroecosystem allows exploration of the effects of both light and soil fertility on AMF communities, because of the variation in shade and soil nutrients farmers generate through field management. We used high-throughput ITS2 sequencing to characterize the AMF communities of coffee roots in 25 fields in Costa Rica that ranged from organic management with high shade and no chemical fertilizers to conventionally managed fields with minimal shade and high N fertilization, and examined relationships between AMF communities and soil and shade parameters with partial correlations, NMDS, PERMANOVA, and partial least squares analysis. Gigasporaceae and Acaulosporaceae dominated coffee AMF communities in terms of relative abundance and richness, respectively. Gigasporaceae richness was greatest in conventionally managed fields, while Glomeraceae richness was greatest in organic fields. While total AMF richness and root colonization did not differ between organic and conventionally managed fields, AMF community composition did; these differences were correlated with soil nitrate and shade. OTUs differing in relative abundance between conventionally managed and organic fields segregated into four groups: Gigasporaceae associated with high light and nitrate availability, Acaulosporaceae with high light and low nitrate availability, Acaulosporaceae and a single relative of Rhizophagus fasciculatus with shade and low nitrate availability, and Claroideoglomus/Glomus with conventionally managed fields but uncorrelated with shade and soil variables. The association of closely related taxa with similar shade and light availabilities is consistent with phylogenetic trait conservatism in AM fungi

    Novel dithiocarbamate derivatives are effective copper-dependent antimicrobials against Streptococcal species

    Get PDF
    Despite the availability of several vaccines against multiple disease-causing strains of Streptococcus pneumoniae, the rise of antimicrobial resistance and pneumococcal disease caused by strains not covered by the vaccine creates a need for developing novel antimicrobial strategies. N,N-dimethyldithiocarbamate (DMDC) was found to be a potent copper-dependent antimicrobial against several pathogens, including S. pneumoniae. Here, DMDCs efficacy against Streptococcal pathogens Streptococcus pyogenes, Streptococcus agalactiae, and Streptococcus anginosus was tested using bactericidal and inductively coupled plasma - optical emission spectrometry. After confirming DMDC as broad-spectrum streptococcal antimicrobial, DMDC was derivatized into five compounds. The derivatives’ effectiveness as copper chelators using DsRed2 and as copper-dependent antimicrobials against S. pneumoniae TIGR4 and tested in bactericidal and animal models. Two compounds, sodium N-benzyl-N-methyldithiocarbamate and sodium N-allyl-N-methyldithiocarbamate (herein “Compound 3” and “Compound 4”), were effective against TIGR4 and further, D39 and ATCC® 6303™ _(a type 3 capsular strain). Both Compound 3 and 4 increased the pneumococcal internal concentrations of copper to the same previously reported levels as with DMDC and copper treatment. However, in an in vivo murine pneumonia model, Compound 3, but not Compound 4, was effective in significantly decreasing the bacterial burden in the blood and lungs of S. pneumoniae-infected mice. These derivatives also had detrimental effects on the other streptococcal species. Collectively, derivatizing DMDC holds promise as potent bactericidal antibiotics against relevant streptococcal pathogens
    corecore