28 research outputs found

    Silvopastoral Systems: Analyses of an Alternative to Open Swards

    Get PDF
    Silvopasture is a sustainable land use management practiced in most continents in the world including parts of southern Europe, but is not broadly used in northern and western Europe. The importance of this practice has been recognised and the last draft of the EU regulation by the European Agricultural Fund for Rural Development (http://europa.eu.int/comm/agriculture/capreform/rurdevprop_en.pdf) includes specifically funding for establishment of agroforestry practices in Europe. This paper discusses the advantages of managing semi intensive grassland within a silvopastoral system from an ecological, productive and social point of view in the south, south-central and western countries of Europe

    Agroforestry for high value tree systems in Europe

    Get PDF
    Most farm-based agroforestry projects focus on the integration of trees on arable or livestock enterprises. This paper focuses on the integration of understorey crops and/or livestock within high value tree systems (e.g., apple orchards, olive groves, chestnut woodlands, and walnut plantations), and describes the components, structure, ecosystem services and economic value of ten case studies of this type of agroforestry across Europe. Although their ecological and socio-economic contexts vary, the systems share some common characteristics. The primary objective of the farmer is likely to remain the value of tree products like apples, olives, oranges, or nuts, or particularly high value timber. However there can still be production, environmental or economic benefits of integrating agricultural crops such as chickpeas and barley, or grazing an understorey grass crop with livestock. Three of the systems focused on the grazing of apple orchards with sheep in the UK and France. The introduction of sheep to apple orchards can minimise the need for mowing and provide an additional source of revenue. Throughout the Mediterranean, there is a need to improve the financial viability of olive groves. The case studies illustrate the possibility of intercropping traditional olive stands with chickpea in Greece, or the intercropping of wild asparagus in high density olive groves in Italy. Another system studied in Greece involves orange trees intercropped with chickpeas. Stands of chestnut trees in North-west Spain can provide feed for pigs when the fruit falls in November, and provide an excellent habitat for the commercial production of edible mushrooms. In Spain, in the production of high quality walnut trees using rotations of up to 50–60 years, there are options to establish a legume-based mixed pasture understorey and to introduce sheep to provide financial and environmental benefits

    Agroforestry in the European common agricultural policy

    Get PDF
    Agroforestry is a sustainable land management system that should be more strongly promoted in Europe to ensure adequate ecosystem service provision in the old continent (Decision 529/2013) through the common agricultural policy (CAP). The promotion of the woody component in Europe can be appreciated in different sections of the CAP linked to Pillar I (direct payments and Greening) and Pillar II (rural development programs). However, agroforestry is not recognised as such in the CAP, with the exception of the Measure 8.2 of Pillar II. The lack of recognition of agroforestry practices within the different sections of the CAP reduces the impact of CAP activities by overlooking the optimum combinations that would maximise the productivity of land where agroforestry could be promoted, considering both the spatial and temporal scales

    The signatures of Anthropocene defaunation: cascading effects of the seed dispersal collapse

    Get PDF
    Anthropogenic activity is driving population declines and extinctions of large-bodied, fruit-eating animals worldwide. Loss of these frugivores is expected to trigger negative cascading effects on plant populations if remnant species fail to replace the seed dispersal services provided by the extinct frugivores. A collapse of seed dispersal may not only affect plant demography (i.e., lack of recruitment), but should also supress gene flow via seed dispersal. Yet little empirical data still exist demonstrating the genetic consequences of defaunation for animal-dispersed plant species. Here, we first document a significant reduction of seed dispersal distances along a gradient of human-driven defaunation, with increasing loss of large- and medium-bodied frugivores. We then show that local plant neighbourhoods have higher genetic similarity and smaller effective population sizes when large seed dispersers become extinct (i.e., only small frugivores remain) or are even partially downgraded (i.e., medium-sized frugivores providing less efficient seed dispersal). Our results demonstrate that preservation of large frugivores is crucial to maintain functional seed dispersal services and their associated genetic imprints, a central conservation target. Early signals of reduced dispersal distances that accompany the Anthropogenic defaunation forecast multiple, cascading effects on plant populations

    Biological influence of Hakai in cancer: a 10-year review

    Get PDF
    In order to metastasize, cancer cells must first detach from the primary tumor, migrate, invade through tissues, and attach to a second site. Hakai was discovered as an E3 ubiquitin-ligase that mediates the posttranslational downregulation of E-cadherin, a major component of adherens junctions in epithelial cells that is characterized as a potent tumor suppressor and is modulated during various processes including epithelial–mesenchymal transition. Recent data have provided evidences for novel biological functional role of Hakai during tumor progression and other diseases. Here, we will review the knowledge that has been accumulated since Hakai discovery 10 years ago and its implication in human cancer disease. We will highlight the different signaling pathways leading to the influence on Hakai and suggest its potential usefulness as therapeutic target for cancer

    Fungal Planet description sheets: 1436–1477

    Get PDF
    Novel species of fungi described in this study include those from various countries as follows: Argentina, Colletotrichum araujiae on leaves, stems and fruits of Araujia hortorum. Australia, Agaricus pateritonsus on soil, Curvularia fraserae on dying leaf of Bothriochloa insculpta, Curvularia millisiae from yellowing leaf tips of Cyperus aromaticus, Marasmius brunneolorobustus on well-rotted wood, Nigrospora cooperae from necrotic leaf of Heteropogon contortus, Penicillium tealii from the body of a dead spider, Pseudocercospora robertsiorum from leaf spots of Senna tora, Talaromyces atkinsoniae from gills of Marasmius crinis-equi and Zasmidium pearceae from leaf spots of Smilax glyciphylla. Brazil, Preussia bezerrensis from air. Chile, Paraconiothyrium kelleni from the rhizosphere of Fragaria chiloensis subsp. chiloensis f. chiloensis. Finland, Inocybe udicola on soil in mixed forest with Betula pendula, Populus tremula, Picea abies and Alnus incana. France, Myrmecridium normannianum on dead culm of unidentified Poaceae. Germany, Vexillomyces fraxinicola from symptomless stem wood of Fraxinus excelsior. India, Diaporthe limoniae on infected fruit of Limonia acidissima, Didymella naikii on leaves of Cajanus cajan, and Fulvifomes mangroviensis on basal trunk of Aegiceras corniculatum. Indonesia, Penicillium ezekielii from Zea mays kernels. Namibia, Neocamarosporium calicoremae and Neocladosporium calicoremae on stems of Calicorema capitata, and Pleiochaeta adenolobi on symptomatic leaves of Adenolobus pechuelii. Netherlands, Chalara pteridii on stems of Pteridium aquilinum, Neomackenziella juncicola (incl. Neomackenziella gen. nov.) and Sporidesmiella junci from dead culms of Juncus effusus. Pakistan, Inocybe longistipitata on soil in a Quercus forest. Poland, Phytophthora viadrina from rhizosphere soil of Quercus robur, and Septoria krystynae on leaf spots of Viscum album. Portugal (Azores), Acrogenospora stellata on dead wood or bark. South Africa, Phyllactinia greyiae on leaves of Greyia sutherlandii and Punctelia anae on bark of Vachellia karroo. Spain, Anteaglonium lusitanicum on decaying wood of Prunus lusitanica subsp. lusitanica, Hawksworthiomyces riparius from fluvial sediments, Lophiostoma carabassense endophytic in roots of Limbarda crithmoides, and Tuber mohedanoi from calcareus soils. Spain (Canary Islands), Mycena laurisilvae on stumps and woody debris. Sweden, Elaphomyces geminus from soil under Quercus robur. Thailand, Lactifluus chiangraiensis on soil under Pinus merkusii, Lactifluus nakhonphanomensis and Xerocomus sisongkhramensis on soil under Dipterocarpus trees. Ukraine, Valsonectria robiniae on dead twigs of Robinia hispida. USA, Spiralomyces americanus (incl. Spiralomyces gen. nov.) from office air. Morphological and culture characteristics are supported by DNA barcodes

    Fungal Planet description sheets: 1383–1435

    Get PDF
    Novel species of fungi described in this study include those from various countries as follows: Australia, Agaricus albofoetidus, Agaricus aureoelephanti and Agaricus parviumbrus on soil, Fusarium ramsdenii from stem cankers of Araucaria cunninghamii, Keissleriella sporoboli from stem of Sporobolus natalensis, Leptosphaerulina queenslandica and Pestalotiopsis chiaroscuro from leaves of Sporobolus natalensis, Serendipita petricolae as endophyte from roots of Eriochilus petricola, Stagonospora tauntonensis from stem of Sporobolus natalensis, Teratosphaeria carnegiei from leaves of Eucalyptus grandis × E. camaldulensis and Wongia ficherai from roots of Eragrostis curvula. Canada, Lulworthia fundyensis from intertidal wood and Newbrunswickomyces abietophilus (incl. Newbrunswickomyces gen. nov.)on buds of Abies balsamea. Czech Republic, Geosmithia funiculosa from a bark beetle gallery on Ulmus minor and Neoherpotrichiella juglandicola (incl. Neoherpotrichiella gen. nov.)from wood of Juglans regia. France, Aspergillus rouenensis and Neoacrodontium gallica (incl. Neoacrodontium gen. nov.)from bore dust of Xestobium rufovillosum feeding on Quercus wood, Endoradiciella communis (incl. Endoradiciella gen. nov.)endophyticin roots of Microthlaspi perfoliatum and Entoloma simulans on soil. India, Amanita konajensis on soil and Keithomyces indicus from soil. Israel, Microascus rothbergiorum from Stylophora pistillata. Italy, Calonarius ligusticus on soil. Netherlands , Appendopyricularia juncicola (incl. Appendopyricularia gen. nov.), Eriospora juncicola and Tetraploa juncicola on dead culms of Juncus effusus, Gonatophragmium physciae on Physcia caesia and Paracosmospora physciae (incl. Paracosmospora gen. nov.)on Physcia tenella, Myrmecridium phragmitigenum on dead culm of Phragmites australis, Neochalara lolae on stems of Pteridium aquilinum, Niesslia nieuwwulvenica on dead culm of undetermined Poaceae, Nothodevriesia narthecii (incl. Nothodevriesia gen. nov.) on dead leaves of Narthecium ossifragum and Parastenospora pini (incl. Parastenospora gen. nov.)on dead twigs of Pinus sylvestris. Norway, Verticillium bjoernoeyanum from sand grains attached to a piece of driftwood on a sandy beach. Portugal, Collybiopsis cimrmanii on the base of living Quercus ilex and amongst dead leaves of Laurus and herbs. South Africa , Paraproliferophorum hyphaenes (incl. Paraproliferophorum gen. nov.) on living leaves of Hyphaene sp. and Saccothecium widdringtoniae on twigs of Widdringtonia wallichii. Spain, Cortinarius dryosalor on soil, Cyphellophora endoradicis endophytic in roots of Microthlaspi perfoliatum, Geoglossum laurisilvae on soil, Leptographium gemmatum from fluvial sediments, Physalacria auricularioides from a dead twig of Castanea sativa , Terfezia bertae and Tuber davidlopezii in soil. Sweden, Alpova larskersii, Inocybe alpestris and Inocybe boreogodeyi on soil. Thailand, Russula banwatchanensis, Russula purpureoviridis and Russula lilacina on soil. Ukraine, Nectriella adonidis on over wintered stems of Adonis vernalis. USA, Microcyclus jacquiniae from living leaves of Jacquinia keyensis and Penicillium neoherquei from a minute mushroom sporocarp. Morphological and culture characteristics are supported by DNA barcodes
    corecore