27 research outputs found

    Design and characterization of magnetic systems in race-track microtrons

    Get PDF
    During last four or five decades there has been a growing demand in particle accelerators which can provide electron beams in the energy ranging from 2 MeV to 100 MeV with high energy resolution and good dose control. Other important requirements are that the machines must be compact, of low power consumption, low price and relatively low maintenance cost. There is a variety of sectors interested in such particle accelerators ranging from industry (industrial radiography) to nuclear physics experiments. One type of machines that meet all these requirements are the electron accelerators with beam recirculation. Fair representatives of this class of accelerators are race-track microtrons (RTM). These sources of electron beam are the most efficient equipment for applications with a relatively low beam current and medium energies ranging from 2 MeV to 100 MeV. The aim of the present thesis is to perform studies of some aspects of the RTMs. One part of the thesis is devoted to the design and development of magnetic elements with permanent magnets of two RTMs for different applications. The first one, which is currently under construction at the UPC (Universidad Politécnica de Cataluña), is a novel accelerator with the beam energy variable between 6 MeV and 12 MeV for medical applications (Intraoperative Radiation Therapy treatments). The other machine is a 55 MeV RTM for the detection of explosives by means of photonuclear reactions, which is at the stage of tests at the Skobeltsyn Institute of Nuclear Physics (SINP). The magnetic field in the designed magnets is generated by rare earth permanent magnet (REPM) materials. This allows to get quite compact magnetic systems compatible with high vacuum environment. In the thesis the design and magnetic properties characterization of the magnetic system of these RTMs are carried out. The calculations were performed by means of 2D and 3D simulations using the POISSON, FEMM and ANSYS codes. In the case of the UPC RTM the design of the 180º dipoles, extraction magnets and quadrupole magnet are carried out. For the SINP 55 MeV RTM the optimization of the magnetic field shielding with the aim to reduce the stray magnetic field generated by the extraction magnet is presented. The results of the simulations were confirmed by experimental measurements of the magnetic field of the magnet with the optimized magnetic field shielding. In the other part of the thesis some aspects of the beam dynamics in RTM magnetic systems are studied. A detailed analysis of the fringe - field focusing in RTM dipole magnets is carried out. Equations for calculation of the fringe - field effect on electron beam trajectories are derived and are applied for a study of the end magnets of the UPC 12 MeV RTM. A general formalism for describing the longitudinal beam dynamics in RTMs for electron beams with arbitrary energy and end magnets with arbitrary magnetic field profile is also developed. This formalism is used for the calculation of the phase-slip effect in RTMs with low energy injection

    Performance of the magnetic system of a 12 MeV UPC race-track microtron

    Get PDF
    The per­for­mance of the mag­netic sys­tem of a 12 MeV elec­tron race-track mi­cro­tron (RTM) which is under con­struc­tion at the Uni­ver­si­tat Politècnica de Catalunya (UPC) is de­scribed. The RTM mag­netic sys­tem con­sists of two four-pole end mag­nets with the main field level about 0.8 T, one quadru­pole and four beam ex­trac­tion dipoles. As a source of the mag­netic field in these mag­nets a Sa-Co rare earth per­ma­nent mag­net ma­te­r­ial is used. This helps to get a quite com­pact de­sign of the RTM and al­lows to place the mag­netic sys­tems in a high vac­uum en­vi­ron­ment of the ac­cel­er­a­tor vac­uum cham­ber. We dis­cuss re­sults of nu­mer­i­cal sim­u­la­tions of the tun­ing of the end mag­nets by mean of spe­cial tuners and de­scribe their en­gi­neer­ing de­sign which per­mits to as­sem­ble the mag­nets and fix the Sa-Co blocks with­out glu­ing. Also a method and re­sults of mag­netic field dis­tri­b­u­tion mea­sure­ments and mag­net tun­ing are re­ported.Postprint (published version

    Rare-earth end magnets of a miniature race-track microtron and their tuning

    Get PDF
    We report basic results on the tuning of permanent end magnets of a compact 12 MeV race-track microtron (RTM) which is under construction at the Technical University of Catalonia. They are magnetic systems composed of four dipoles with the rare-earth permanent magnet (REPM) material used as a source of the magnetic field. The steel poles of the magnets are equipped with tuning plungers which allow to adjust the magnetic field level. In the article we shortly describe the tuning procedure and different techniques that were used in order to fulfill strict requirements of the field characteristics of the end magnets. It is shown that the obtained magnetic systems provide correct beam trajectories in the 12 MeV RTM. More detailed information about tuning procedure and results of tuning will be published elsewhere.Postprint (published version

    Quadrupole lens and extraction magnets of a miniature race-track microtron

    Get PDF
    A compact 12 MeV race-track microtron (RTM) which is under construction at the Technical University of Catalonia includes a quadrupole magnet for horizontal beam focusing and four dipole magnets for beam extraction. As the source of the magnetic field in these magnets a rare-earth permanent magnet (REPM) material is used. In the article the main design characteristics of the quadrupole lens and extraction dipoles are described and a procedure of tuning of their magnetic fields is described. We report on the manufacturing of these magnetic systems and results of the tuning of their magnetic fields.Postprint (published version

    Experimental Setup for Irradiation of Cell Cultures at L2A2

    Full text link
    [EN] Laser-plasma proton sources and their applications to preclinical research has become a very active field of research in recent years. In addition to their small dimensions as compared to classical ion accelerators, they offer the possibility to study the biological effects of ultra-short particle bunches and the correspondingly high dose rates. We report on the design of an experimental setup for the irradiation of cell cultures at the L2A2 laboratory at the University of Santiago de Compostela, making use of a 1.2 J Ti: Sapphire laser with a 10 Hz repetition rate. Our setup comprises a proton energy separator consisting of two antiparallel magnetic fields realized by a set of permanent magnets. It allows for selecting a narrow energy window around an adaptable design value of 5 MeV out of the initially broad spectrum typical for Target Normal Sheath Acceleration (TNSA). At the same time, unwanted electrons and X-rays are segregated from the protons. This part of the setup is located inside the target vessel of the L2A2 laser. A subsequent vacuum flange sealed with a thin kapton window allows for particle passage to external sample irradiation. A combination of passive detector materials and real-time monitors is applied for measurement of the deposited radiation dose. A critical point of this interdisciplinary project is the manipulation of biological samples under well-controlled, sterile conditions. Cell cultures are prepared in sealed flasks with an ultra-thin entrance window and analysed at the nearby Fundacion Publica Galega Medicina Xenomica and IDIS. The first trials will be centred at the quantification of DNA double-strand breaks as a function of radiation dose.Projects RTI2018-101578-B-C21 and RTI2018-101578-B-C22 are funded by MCIN/AEI /10.13039/501100011033 and by FEDER "Una manera de hacer Europa". Project AICO/2020/207 is funded by Generalitat Valenciana. Supports PEJ2018-002035-A and PEJ2018-002037-A are financed by AEI and "El FSE invierte en tu futuro". Additional funding is by FPI predoctoral grant BES-2017-08917 and Unidad de Excelencia Maria de Maeztu, MdM-2016-0692-17-2. Action is co-financed by the European Union through the Programa Operativo del Fondo Europeo de Desarrollo Regional (FEDER) of the Comunitat Valenciana 2014-2020 (IDIFEDER/2018/022 and IDIFEDER/2021/004). FPGMX-IDIS research is partially supported by the Spanish Instituto de Salud Carlos III (ISCIII) funding, which is an initiative of the Spanish Ministry of Economy and Innovation partially supported by European Regional Development FEDER Funds (INT20/00071, PI19/01424, AC18/00117) and through the Autonomous Government of Galicia (Consolidation and structuring program: IN607B) given to A. Vega.Torralba, A.; Palenciano-Castro, L.; Reija, A.; Rigla, JP.; Peñas, J.; Llerena, JJ.; Contreras-Martinez, R.... (2022). Experimental Setup for Irradiation of Cell Cultures at L2A2. Quantum Beam Science. 6(1):1-11. https://doi.org/10.3390/qubs60100101116

    A Fast 0.5 T Prepolarizer Module for Preclinical Magnetic Resonance Imaging

    Get PDF
    We present a magnet and high power electronics for Prepolarized Magnetic Resonance Imaging (PMRI) in a home-made, special-purpose preclinical system designed for simultaneous visualization of hard and soft biological tissues. The sensitivity of MRI systems grows with field strength, but so do their costs. PMRI can boost the signal-to-noise ratio (SNR) in affordable low-field scanners by means of a long and strong magnetic pulse. However, this must be rapidly switched off prior to the imaging pulse sequence, in timescales shorter than the spin relaxation (or T1) time of the sample. We have operated our prepolarizer at up to 0.5 T and demonstrated enhanced magnetization, image SNR and tissue contrast with PMRI of tap water, an ex vivo mouse brain and food samples. These have T1 times ranging from hundreds of milli-seconds to single seconds, while the preliminary high-power electronics setup employed in this work can switch off the prepolarization field in tens of milli-seconds. In order to make this system suitable for solid-state matter and hard tissues, which feature T1 times as short as 10 ms, we are developing new electronics which can cut switching times to ~ 300 μs. This does not require changes in the prepolarizer module, opening the door to the first experimental demonstration of PMRI on hard biological tissues

    Current status of the 12 MeV UPC race-track microtron

    Get PDF
    A com­pact race-track mi­crotron (RTM) with the max­i­mal out­put en­er­gy 12 MeV is under con­struc­tion at the Uni­ver­si­tat Politècnica de Catalun­ya (UPC) in col­lab­o­ra­tion with the Sko­belt­syn In­sti­tute of Nu­cle­ar Physics of the Moscow State Uni­ver­si­ty, CIEMAT and a few Span­ish in­dus­tri­al com­pa­nies and med­i­cal cen­ters. The RTM end mag­nets are four-pole sys­tems with the mag­net­ic field cre­at­ed by a rare-earth per­ma­nent mag­net ma­te­ri­al. As a source of elec­trons a 3D off-ax­is elec­tron gun is used. These el­e­ments to­geth­er with a C-band ac­cel­er­at­ing struc­ture, dipole mag­nets, which allow to ex­tract the elec­tron beam with en­er­gy from 6 MeV to 12 MeV in 2 MeV step, and a fo­cus­ing quadrupole are placed in­side a vac­u­um cham­ber. We re­port on the cur­rent sta­tus of the tech­ni­cal de­sign and re­sults of tests of some of the com­po­nents.Postprint (published version

    Characterization of protons accelerated from a 3 TW table-top laser system

    Full text link
    [EN] We report on benchmark tests of a 3 TW/50 fs, table-top laser system specifically developed for proton acceleration with an intrinsic pump rate up to 100 Hz. In two series of single-shot measurements differing in pulse energy and contrast the successful operation of the diode pumped laser is demonstrated. Protons have been accelerated up to 1.6 MeV in interactions of laser pulses focused on aluminium and mylar foils between 0.8 and 25 mu m thickness. Their spectral distributions and maximum energies are consistent with former experiments under similar conditions. These results show the suitability of our system and provide a reference for studies of laser targets at high repetition rate and possible applications.This project has been funded by Centro para el Desarrollo Tecnologico Industrial (CDTI, Spain) within the INNPRONTA program, grant no. IPT-20111027, by EUROSTARS project E9113, and by the Spanish Ministry for Economy and Competitiveness within the Retos-Colaboracion 2015 initiative, ref. RTC-2015-3278-1.Bellido-Millán, PJ.; Lera, R.; Seimetz, M.; Ruiz-De La Cruz, A.; Torres Peiró, S.; Galán, M.; Mur, P.... (2017). Characterization of protons accelerated from a 3 TW table-top laser system. Journal of Instrumentation. 12:1-12. https://doi.org/10.1088/1748-0221/12/05/T05001S11212Daido, H., Nishiuchi, M., & Pirozhkov, A. S. (2012). Review of laser-driven ion sources and their applications. Reports on Progress in Physics, 75(5), 056401. doi:10.1088/0034-4885/75/5/056401Macchi, A., Borghesi, M., & Passoni, M. (2013). Ion acceleration by superintense laser-plasma interaction. Reviews of Modern Physics, 85(2), 751-793. doi:10.1103/revmodphys.85.751Ledingham, K., Bolton, P., Shikazono, N., & Ma, C.-M. (2014). Towards Laser Driven Hadron Cancer Radiotherapy: A Review of Progress. Applied Sciences, 4(3), 402-443. doi:10.3390/app4030402Kraft, S. D., Richter, C., Zeil, K., Baumann, M., Beyreuther, E., Bock, S., … Pawelke, J. (2010). Dose-dependent biological damage of tumour cells by laser-accelerated proton beams. New Journal of Physics, 12(8), 085003. doi:10.1088/1367-2630/12/8/085003Yogo, A., Sato, K., Nishikino, M., Mori, M., Teshima, T., Numasaki, H., … Daido, H. (2009). Application of laser-accelerated protons to the demonstration of DNA double-strand breaks in human cancer cells. Applied Physics Letters, 94(18), 181502. doi:10.1063/1.3126452Fritzler, S., Malka, V., Grillon, G., Rousseau, J. P., Burgy, F., Lefebvre, E., … Ledingham, K. W. D. (2003). Proton beams generated with high-intensity lasers: Applications to medical isotope production. Applied Physics Letters, 83(15), 3039-3041. doi:10.1063/1.1616661Kishimura, H., Morishita, H., Okano, Y. H., Okano, Y., Hironaka, Y., Kondo, K., … Nemoto, K. (2004). Enhanced generation of fast protons from a polymer-coated metal foil by a femtosecond intense laser field. Applied Physics Letters, 85(14), 2736-2738. doi:10.1063/1.1803915Nakamura, S., Iwashita, Y., Noda, A., Shirai, T., Tongu, H., Fukumi, A., … Wada, Y. (2006). Real-Time Optimization of Proton Production by Intense Short-Pulse Laser with Time-of-Flight Measurement. Japanese Journal of Applied Physics, 45(No. 34), L913-L916. doi:10.1143/jjap.45.l913Nishiuchi, M., Fukumi, A., Daido, H., Li, Z., Sagisaka, A., Ogura, K., … Nakamura, S. (2006). The laser proton acceleration in the strong charge separation regime. Physics Letters A, 357(4-5), 339-344. doi:10.1016/j.physleta.2006.04.053Yogo, A., Daido, H., Fukumi, A., Li, Z., Ogura, K., Sagisaka, A., … Itoh, A. (2007). Laser prepulse dependency of proton-energy distributions in ultraintense laser-foil interactions with an online time-of-flight technique. Physics of Plasmas, 14(4), 043104. doi:10.1063/1.2721066Robinson, A. P. L., Foster, P., Adams, D., Carroll, D. C., Dromey, B., Hawkes, S., … Neely, D. (2009). Spectral modification of laser-accelerated proton beams by self-generated magnetic fields. New Journal of Physics, 11(8), 083018. doi:10.1088/1367-2630/11/8/083018Nemoto, K., Maksimchuk, A., Banerjee, S., Flippo, K., Mourou, G., Umstadter, D., & Bychenkov, V. Y. (2001). Laser-triggered ion acceleration and table top isotope production. Applied Physics Letters, 78(5), 595-597. doi:10.1063/1.1343845Lee, K., Park, S. H., Cha, Y.-H., Lee, J. Y., Lee, Y. W., Yea, K.-H., & Jeong, Y. U. (2008). Generation of intense proton beams from plastic targets irradiated by an ultraintense laser pulse. Physical Review E, 78(5). doi:10.1103/physreve.78.056403Yogo, A., Daido, H., Bulanov, S. V., Nemoto, K., Oishi, Y., Nayuki, T., … Tajima, T. (2008). Laser ion acceleration via control of the near-critical density target. Physical Review E, 77(1). doi:10.1103/physreve.77.016401Lee, K., Lee, J. Y., Park, S. H., Cha, Y.-H., Lee, Y. W., Kim, K. N., & Jeong, Y. U. (2011). Dominant front-side acceleration of energetic proton beams from plastic targets irradiated by an ultraintense laser pulse. Physics of Plasmas, 18(1), 013101. doi:10.1063/1.3496058OKIHARA, S., SENTOKU, Y., SUEDA, K., SHIMIZU, S., SATO, F., MIYANAGA, N., … SAKABE, S. (2002). Energetic Proton Generation in a Thin Plastic Foil Irradiated by Intense Femtosecond Lasers. Journal of Nuclear Science and Technology, 39(1), 1-5. doi:10.1080/18811248.2002.9715150McKenna, P., Ledingham, K. W. D., Spencer, I., McCany, T., Singhal, R. P., Ziener, C., … Clark, E. L. (2002). Characterization of multiterawatt laser-solid interactions for proton acceleration. Review of Scientific Instruments, 73(12), 4176-4184. doi:10.1063/1.1516855Spencer, I., Ledingham, K. W. D., McKenna, P., McCanny, T., Singhal, R. P., Foster, P. S., … Davies, J. R. (2003). Experimental study of proton emission from 60-fs, 200-mJ high-repetition-rate tabletop-laser pulses interacting with solid targets. Physical Review E, 67(4). doi:10.1103/physreve.67.046402Kaluza, M., Schreiber, J., Santala, M. I. K., Tsakiris, G. D., Eidmann, K., Meyer-ter-Vehn, J., & Witte, K. J. (2004). Influence of the Laser Prepulse on Proton Acceleration in Thin-Foil Experiments. Physical Review Letters, 93(4). doi:10.1103/physrevlett.93.045003Ceccotti, T., Lévy, A., Popescu, H., Réau, F., D’Oliveira, P., Monot, P., … Martin, P. (2007). Proton Acceleration with High-Intensity Ultrahigh-Contrast Laser Pulses. Physical Review Letters, 99(18). doi:10.1103/physrevlett.99.185002Neely, D., Foster, P., Robinson, A., Lindau, F., Lundh, O., Persson, A., … McKenna, P. (2006). Enhanced proton beams from ultrathin targets driven by high contrast laser pulses. Applied Physics Letters, 89(2), 021502. doi:10.1063/1.2220011Steinke, S., Henig, A., Schnürer, M., Sokollik, T., Nickles, P. V., Jung, D., … Habs, D. (2010). Efficient ion acceleration by collective laser-driven electron dynamics with ultra-thin foil targets. Laser and Particle Beams, 28(1), 215-221. doi:10.1017/s0263034610000157Strickland, D., & Mourou, G. (1985). Compression of amplified chirped optical pulses. Optics Communications, 56(3), 219-221. doi:10.1016/0030-4018(85)90120-8Yogo, A., Kondo, K., Mori, M., Kiriyama, H., Ogura, K., Shimomura, T., … Bolton, P. R. (2014). Insertable pulse cleaning module with a saturable absorber pair and a compensating amplifier for high-intensity ultrashort-pulse lasers. Optics Express, 22(2), 2060. doi:10.1364/oe.22.002060Trisorio, A., Grabielle, S., Divall, M., Forget, N., & Hauri, C. P. (2012). Self-referenced spectral interferometry for ultrashort infrared pulse characterization. Optics Letters, 37(14), 2892. doi:10.1364/ol.37.002892Seimetz, M., Bellido, P., Soriano, A., Garcia Lopez, J., Jimenez-Ramos, M. C., Fernandez, B., … Benlloch, J. M. (2015). Calibration and Performance Tests of Detectors for Laser-Accelerated Protons. IEEE Transactions on Nuclear Science, 62(6), 3216-3224. doi:10.1109/tns.2015.2480682Nürnberg, F., Schollmeier, M., Brambrink, E., Blažević, A., Carroll, D. C., Flippo, K., … Roth, M. (2009). Radiochromic film imaging spectroscopy of laser-accelerated proton beams. Review of Scientific Instruments, 80(3), 033301. doi:10.1063/1.3086424Oishi, Y., Nayuki, T., Fujii, T., Takizawa, Y., Wang, X., Yamazaki, T., … Andreev, A. A. (2005). Dependence on laser intensity and pulse duration in proton acceleration by irradiation of ultrashort laser pulses on a Cu foil target. Physics of Plasmas, 12(7), 073102. doi:10.1063/1.1943436Nishiuchi, M., Daito, I., Ikegami, M., Daido, H., Mori, M., Orimo, S., … Yoshiyuki, T. (2009). Focusing and spectral enhancement of a repetition-rated, laser-driven, divergent multi-MeV proton beam using permanent quadrupole magnets. Applied Physics Letters, 94(6), 061107. doi:10.1063/1.3078291Antici, P., Fuchs, J., d’ Humières, E., Lefebvre, E., Borghesi, M., Brambrink, E., … Pépin, H. (2007). Energetic protons generated by ultrahigh contrast laser pulses interacting with ultrathin targets. Physics of Plasmas, 14(3), 030701. doi:10.1063/1.2480610Green, J. S., Carroll, D. C., Brenner, C., Dromey, B., Foster, P. S., Kar, S., … Zepf, M. (2010). Enhanced proton flux in the MeV range by defocused laser irradiation. New Journal of Physics, 12(8), 085012. doi:10.1088/1367-2630/12/8/085012Zeil, K., Kraft, S. D., Bock, S., Bussmann, M., Cowan, T. E., Kluge, T., … Schramm, U. (2010). The scaling of proton energies in ultrashort pulse laser plasma acceleration. New Journal of Physics, 12(4), 045015. doi:10.1088/1367-2630/12/4/045015Nishiuchi, M., Daido, H., Yogo, A., Orimo, S., Ogura, K., Ma, J., … Azuma, H. (2008). Efficient production of a collimated MeV proton beam from a polyimide target driven by an intense femtosecond laser pulse. Physics of Plasmas, 15(5), 053104. doi:10.1063/1.2928161Macchi, A., Sgattoni, A., Sinigardi, S., Borghesi, M., & Passoni, M. (2013). Advanced strategies for ion acceleration using high-power lasers. Plasma Physics and Controlled Fusion, 55(12), 124020. doi:10.1088/0741-3335/55/12/124020Fuchs, J., Antici, P., d’ Humières, E., Lefebvre, E., Borghesi, M., Brambrink, E., … Audebert, P. (2005). Laser-driven proton scaling laws and new paths towards energy increase. Nature Physics, 2(1), 48-54. doi:10.1038/nphys199Schwoerer, H., Pfotenhauer, S., Jäckel, O., Amthor, K.-U., Liesfeld, B., Ziegler, W., … Esirkepov, T. (2006). Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets. Nature, 439(7075), 445-448. doi:10.1038/nature04492Margarone, D., Klimo, O., Kim, I. J., Prokůpek, J., Limpouch, J., Jeong, T. M., … Korn, G. (2012). Laser-Driven Proton Acceleration Enhancement by Nanostructured Foils. Physical Review Letters, 109(23). doi:10.1103/physrevlett.109.234801Flippo, K. A., d’ Humières, E., Gaillard, S. A., Rassuchine, J., Gautier, D. C., Schollmeier, M., … Hegelich, B. M. (2008). Increased efficiency of short-pulse laser-generated proton beams from novel flat-top cone targets. Physics of Plasmas, 15(5), 056709. doi:10.1063/1.291812

    Calibration and Performance Tests of Detectors for Laser-Accelerated Protons

    Full text link
    “©2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.”We present the calibration and performance tests carried out with two detectors for intense proton pulses accelerated by lasers. Most of the procedures were realized with proton beams of 0.46-5.60 MeV from a tandem accelerator. One approach made use of radiochromic films, for which we calibrated the relation between optical density and energy deposition over more than three orders of magnitude. The validity of these results and of our analysis algorithms has been confirmed by controlled irradiation of film stacks and reconstruction of the total beam charge for strongly non-uniform beam profiles. For the spectral analysis of protons from repeated laser shots, we have designed an online monitor based on a plastic scintillator. The resulting signal from a photomultiplier directly measured on a fast oscilloscope is especially useful for time-of-flight applications. Variable optical filters allow for suppression of saturation and an extension of the dynamic range. With pulsed proton beams we have tested the detector response to a wide range of beam intensities from single particles 3 x 10(5) to protons per 100 ns time interval.Project funded by the Spanish Ministry of Economy and Competitiveness and co-funded with FEDER's funds within the INNPACTO 2011 program under Grant No. IPT-2011-0862-900000. This work was supported by the Spanish Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica (I+D+i) under Grant No. TEC 2013-48036-C3-1-R and the Valencian Local Government under Grants PROMETEOII/2013/010 and ISIC 2011/013. The work of A. J. Gonzalez is financed by CSIC with a JAE-Doc contract under Junta de Ampliacion de Estudios program, cofinanced by the European Social Fund.Seimetz, M.; Bellido, P.; Soriano Asensi, A.; García López, J.; Jiménez-Ramos, M.; Fernández, B.; Conde Castellanos, PE.... (2015). Calibration and Performance Tests of Detectors for Laser-Accelerated Protons. IEEE Transactions on Nuclear Science. 62(6):3216-3224. https://doi.org/10.1109/TNS.2015.2480682S3216322462

    Performance of the magnetic system of a 12 MeV UPC race-track microtron

    No full text
    The per­for­mance of the mag­netic sys­tem of a 12 MeV elec­tron race-track mi­cro­tron (RTM) which is under con­struc­tion at the Uni­ver­si­tat Politècnica de Catalunya (UPC) is de­scribed. The RTM mag­netic sys­tem con­sists of two four-pole end mag­nets with the main field level about 0.8 T, one quadru­pole and four beam ex­trac­tion dipoles. As a source of the mag­netic field in these mag­nets a Sa-Co rare earth per­ma­nent mag­net ma­te­r­ial is used. This helps to get a quite com­pact de­sign of the RTM and al­lows to place the mag­netic sys­tems in a high vac­uum en­vi­ron­ment of the ac­cel­er­a­tor vac­uum cham­ber. We dis­cuss re­sults of nu­mer­i­cal sim­u­la­tions of the tun­ing of the end mag­nets by mean of spe­cial tuners and de­scribe their en­gi­neer­ing de­sign which per­mits to as­sem­ble the mag­nets and fix the Sa-Co blocks with­out glu­ing. Also a method and re­sults of mag­netic field dis­tri­b­u­tion mea­sure­ments and mag­net tun­ing are re­ported
    corecore