3,296 research outputs found

    Transfer of spectral weight across the gap of Sr2IrO4 induced by La doping

    Full text link
    We study with Angle Resolved PhotoElectron Spectroscopy (ARPES) the evolution of the electronic structure of Sr2IrO4, when holes or electrons are introduced, through Rh or La substitutions. At low dopings, the added carriers occupy the first available states, at bottom or top of the gap, revealing an anisotropic gap of 0.7eV in good agreement with STM measurements. At further doping, we observe a reduction of the gap and a transfer of spectral weight across the gap, although the quasiparticle weight remains very small. We discuss the origin of the in-gap spectral weight as a local distribution of gap values

    Factors related to adolescent drinking in Appalachia

    Get PDF
    Objectives: To examine the relationships among parental monitoring, perceptions of peer drinking, and adolescent alcohol consumption. Methods: Tenth- and 12thgrade students (N=648) in a rural, Appalachian county were surveyed. Results: A binomial logistic regression revealed a composite of those who had perceptions that many peers drank, low parental monitoring, and no biological male guardian in the home were 8.496 times more likely to have ever been drunk. Other characteristics resulted in lower odds. Conclusions: Parental monitoring and perceptions of peer drinking were important predictors of drinking in this rural sample. Prevention efforts in school and at home should address both variables

    Continuous evolution of the in-plane magnetic anisotropies with thickness in epitaxial Fe films

    Get PDF
    Copyright © 1996 American Institute of Physics.We have studied the evolution of the magnetic in‐plane anisotropy in epitaxial Fe/GaAs films of both (001) and (110) orientation as a function of the Fe layer thickness using the longitudinal magneto‐optic Kerr effect and Brillouin light scattering. Magnetization curves which are recorded in situ during film growth reveal a continuous change of the net anisotropy axes with increasing film thickness. This behavior can be understood to arise from the combination of a uniaxial and a cubic in‐plane magnetic anisotropy which are both thickness dependent. Structural analysis of the substrate and Fe film surfaces provides insight into the contribution of atomic steps at the interfaces to the magnetic anisotropy. Changing the degree of crystalline order at the Fe–GaAs interface allows us to conclude that the magnetic anisotropies are determined by atomic scale order

    Free-Range Pre-Programmed RC Car

    Get PDF
    There is a growing interest in the capabilities and utilization of autonomous vehicles. The objective of this project is to design a small scale illustration of an autonomous vehicle driven by user input. An application will be designed that will allow a user to create a track that an RC car will accurately follow. As the car follows the track, a microcontroller on the vehicle will send movement information back to the application. This information is used by the application to process where the vehicle is currently at and where it needs to go. While in motion, on-board sensors will actively detect obstacles in the path and adjust the vehicle’s direction to avoid collision

    Intraoperative electrocochleographic characteristics of auditory neuropathy spectrum disorder in cochlear implant subjects

    Get PDF
    Auditory neuropathy spectrum disorder (ANSD) is characterized by an apparent discrepancy between measures of cochlear and neural function based on auditory brainstem response (ABR) testing. Clinical indicators of ANSD are a present cochlear microphonic (CM) with small or absent wave V. Many identified ANSD patients have speech impairment severe enough that cochlear implantation (CI) is indicated. To better understand the cochleae identified with ANSD that lead to a CI, we performed intraoperative round window electrocochleography (ECochG) to tone bursts in children (n = 167) and adults (n = 163). Magnitudes of the responses to tones of different frequencies were summed to measure the “total response” (ECochG-TR), a metric often dominated by hair cell activity, and auditory nerve activity was estimated visually from the compound action potential (CAP) and auditory nerve neurophonic (ANN) as a ranked “Nerve Score”. Subjects identified as ANSD (45 ears in children, 3 in adults) had higher values of ECochG-TR than adult and pediatric subjects also receiving CIs not identified as ANSD. However, nerve scores of the ANSD group were similar to the other cohorts, although dominated by the ANN to low frequencies more than in the non-ANSD groups. To high frequencies, the common morphology of ANSD cases was a large CM and summating potential, and small or absent CAP. Common morphologies in other groups were either only a CM, or a combination of CM and CAP. These results indicate that responses to high frequencies, derived primarily from hair cells, are the main source of the CM used to evaluate ANSD in the clinical setting. However, the clinical tests do not capture the wide range of neural activity seen to low frequency sounds

    Short small-polaron lifetime in the mixed-valence perovskite Cs2_2Au2_2I6_6 from high-pressure pump-probe experiments

    Full text link
    We study the ultrafast phonon response of mixed-valence perovskite Cs2_2Au2_2I6_6 using pump-probe spectroscopy under high-pressure in a diamond anvil cell. We observed a remarkable softening and broadening of the Au - I stretching phonon mode with both applied pressure and photoexcitation. Using a double-pump scheme we measured a lifetime of the charge transfer excitation into single valence Au2+^{2+} of less than 4 ps, which is an indication of the local character of the Au2+^{2+} excitation. Furthermore, the strong similarity between the pressure and fluence dependence of the phonon softening shows that the inter-valence charge transfer plays an important role in the structural transition.Comment: 4 pages, 4 figure

    Scale-invariant magnetoresistance in a cuprate superconductor

    Full text link
    The anomalous metallic state in high-temperature superconducting cuprates is masked by the onset of superconductivity near a quantum critical point. Use of high magnetic fields to suppress superconductivity has enabled a detailed study of the ground state in these systems. Yet, the direct effect of strong magnetic fields on the metallic behavior at low temperatures is poorly understood, especially near critical doping, x=0.19x=0.19. Here we report a high-field magnetoresistance study of thin films of \LSCO cuprates in close vicinity to critical doping, 0.161x0.1900.161\leq x\leq0.190. We find that the metallic state exposed by suppressing superconductivity is characterized by a magnetoresistance that is linear in magnetic field up to the highest measured fields of 8080T. The slope of the linear-in-field resistivity is temperature-independent at very high fields. It mirrors the magnitude and doping evolution of the linear-in-temperature resistivity that has been ascribed to Planckian dissipation near a quantum critical point. This establishes true scale-invariant conductivity as the signature of the strange metal state in the high-temperature superconducting cuprates.Comment: 10 pages, 3 figure
    corecore