1,865 research outputs found

    Phonon Assisted Multimagnon Optical Absorption and Long Lived Two-Magnon States in Undoped Lamellar Copper Oxides

    Full text link
    We calculate the effective charge for multimagnon infrared (IR) absorption assisted by phonons in the parent insulating compounds of cuprate superconductors and the spectra for two-magnon absorption using interacting spin-wave theory. Recent measured bands in the mid IR [Perkins et al. Phys. Rev. Lett. {\bf 71} 1621 (1993)] are interpreted as involving one phonon plus a two-magnon virtual bound state, and one phonon plus higher multimagnon absorption processes. The virtual bound state consists of a narrow resonance occurring when the magnon pair has total momentum close to (π,0)(\pi,0).Comment: 4 page

    Solution of the Multi-Channel Anderson Impurity Model: Ground state and thermodynamics

    Full text link
    We present the solution of the SU(N) x SU(M) Anderson impurity model using the Bethe-Ansatz. We first explain what extensions to the formalism were required for the solution. Subsequently we determine the ground state and derive the thermodynamics over the full range of temperature and fields. We identify the different regimes of valence fluctuation at high temperatures, followed by moment formation or intrinsic mixed valence at intermediate temperatures and a low temperature non-Fermi liquid phase. Among other things we obtain the impurity entropy, charge valence and specific heat over the full range of temperature. We show that the low-energy physics is governed by a line of fixed points. This describes non-Fermi-liquid behavior in the integral valence regime, associated with moment formation, as well as in the mixed valence regime where no moment forms.Comment: 28 pages, 8 figures, 1 tabl

    Concepts of flywheels for energy storage using autostable high-T(sub c) superconducting magnetic bearings

    Get PDF
    A flywheel for energy storage using autostable high-T(sub c) superconducting magnetic bearings has been built. The rotating disk has a total weight of 2.8 kg. The maximum speed is 9240 rpm. A process that allows accelerated, reliable and reproducible production of melt-textured superconducting material used for the bearings has been developed. In order to define optimum configurations for radial and axial bearings, interaction forces in three dimensions and vertical and horizontal stiffness have been measured between superconductors and permanent magnets in different geometries and various shapes. Static as well as dynamic measurements have been performed. Results are being reported and compared to theoretical models

    Associations between SNPs and immune-related circulating proteins in schizophrenia

    Get PDF
    Genome-wide association studies (GWAS) and proteomic studies have provided convincing evidence implicating alterations in immune/inflammatory processes in schizophrenia. However, despite the convergence of evidence, direct links between the genetic and proteomic findings are still lacking for schizophrenia. We investigated associations between single nucleotide polymorphisms (SNPs) from the custom-made PsychArray and the expression levels of 190 multiplex immunoassay profiled serum proteins in 149 schizophrenia patients and 198 matched controls. We identified associations between 81 SNPs and 29 proteins, primarily involved in immune/inflammation responses. Significant SNPxDiagnosis interactions were identified for eight serum proteins including Factor-VII[rs555212], Alpha-1-Antitrypsin[rs11846959], Interferon-Gamma Induced Protein 10[rs4256246] and von-Willebrand-Factor[rs12829220] in the control group; Chromogranin-A[rs9658644], Cystatin-C[rs2424577] and Vitamin K-Dependent Protein S[rs6123] in the schizophrenia group; Interleukin-6 receptor[rs7553796] in both the control and schizophrenia groups. These results suggested that the effect of these SNPs on expression of the respective proteins varies with diagnosis. The combination of patient-specific genetic information with blood biomarker data opens a novel approach to investigate disease mechanisms in schizophrenia and other psychiatric disorders. Our findings not only suggest that blood protein expression is influenced by polymorphisms in the corresponding gene, but also that the effect of certain SNPs on expression of proteins can vary with diagnosis

    A functional variant in the serotonin receptor 7 gene (HTR7), rs7905446, is associated with good response to SSRIs in bipolar and unipolar depression.

    Get PDF
    Predicting antidepressant response has been a clinical challenge for mood disorder. Although several genome-wide association studies have suggested a number of genetic variants to be associated with antidepressant response, the sample sizes are small and the results are difficult to replicate. Previous animal studies have shown that knockout of the serotonin receptor 7 gene (HTR7) resulted in an antidepressant-like phenotype, suggesting it was important to antidepressant action. In this report, in the first stage, we used a cost-effective pooled-sequencing strategy to sequence the entire HTR7 gene and its regulatory regions to investigate the association of common variants in HTR7 and clinical response to four selective serotonin reuptake inhibitors (SSRIs: citalopram, paroxetine, fluoxetine and sertraline) in a retrospective cohort mainly consisting of subjects with bipolar disorder (n = 359). We found 80 single-nucleotide polymorphisms (SNPs) with false discovery rate < 0.05 associated with response to paroxetine. Among the significant SNPs, rs7905446 (T/G), which is located at the promoter region, also showed nominal significance (P < 0.05) in fluoxetine group. GG/TG genotypes for rs7905446 and female gender were associated with better response to two SSRIs (paroxetine and fluoxetine). In the second stage, we replicated this association in two independent prospective samples of SSRI-treated patients with major depressive disorder: the MARS (n = 253, P = 0.0169) and GENDEP studies (n = 432, P = 0.008). The GG/TG genotypes were consistently associated with response in all three samples. Functional study of rs7905446 showed greater activity of the G allele in regulating expression of HTR7. The G allele displayed higher luciferase activity in two neuronal-related cell lines, and estrogen treatment decreased the activity of only the G allele. Electrophoretic mobility shift assay suggested that the G allele interacted with CCAAT/enhancer-binding protein beta transcription factor (TF), while the T allele did not show any interaction with any TFs. Our results provided novel pharmacogenomic evidence to support the role of HTR7 in association with antidepressant response

    DeepWAS: Multivariate genotype-phenotype associations by directly integrating regulatory information using deep learning

    Get PDF
    Genome-wide association studies (GWAS) identify genetic variants associated with traits or diseases. GWAS never directly link variants to regulatory mechanisms. Instead, the functional annotation of variants is typically inferred by post hoc analyses. A specific class of deep learning-based methods allows for the prediction of regulatory effects per variant on several cell type-specific chromatin features. We here describe \textquotedblDeepWAS\textquotedbl, a new approach that integrates these regulatory effect predictions of single variants into a multivariate GWAS setting. Thereby, single variants associated with a trait or disease are directly coupled to their impact on a chromatin feature in a cell type. Up to 61 regulatory SNPs, called dSNPs, were associated with multiple sclerosis (MS, 4,888 cases and 10,395 controls), major depressive disorder (MDD, 1,475 cases and 2,144 controls), and height (5,974 individuals). These variants were mainly non-coding and reached at least nominal significance in classical GWAS. The prediction accuracy was higher for DeepWAS than for classical GWAS models for 91% of the genome-wide significant, MS-specific dSNPs. DSNPs were enriched in public or cohort-matched expression and methylation quantitative trait loci and we demonstrated the potential of DeepWAS to generate testable functional hypotheses based on genotype data alone. DeepWAS is available at https://github.com/cellmapslab/DeepWAS

    Y Chromosomal Variation Tracks the Evolution of Mating Systems in Chimpanzee and Bonobo

    Get PDF
    The male-specific regions of the Y chromosome (MSY) of the human and the chimpanzee (Pan troglodytes) are fully sequenced. The most striking difference is the dramatic rearrangement of large parts of their respective MSYs. These non-recombining regions include ampliconic gene families that are known to be important for male reproduction,and are consequently under significant selective pressure. However, whether the published Y-chromosomal pattern of ampliconic fertility genes is invariable within P. troglodytes is an open but fundamental question pertinent to discussions of the evolutionary fate of the Y chromosome in different primate mating systems. To solve this question we applied fluorescence in situ hybridisation (FISH) of testis-specific expressed ampliconic fertility genes to metaphase Y chromosomes of 17 chimpanzees derived from 11 wild-born males and 16 bonobos representing seven wild-born males. We show that of eleven P. troglodytes Y-chromosomal lines, ten Y-chromosomal variants were detected based on the number and arrangement of the ampliconic fertility genes DAZ (deleted in azoospermia) and CDY (chromodomain protein Y)—a so-far never-described variation of a species' Y chromosome. In marked contrast, no variation was evident among seven Y-chromosomal lines of the bonobo, P. paniscus, the chimpanzee's closest living relative. Although, loss of variation of the Y chromosome in the bonobo by a founder effect or genetic drift cannot be excluded, these contrasting patterns might be explained in the context of the species' markedly different social and mating behaviour. In chimpanzees, multiple males copulate with a receptive female during a short period of visible anogenital swelling, and this may place significant selection on fertility genes. In bonobos, however, female mate choice may make sperm competition redundant (leading to monomorphism of fertility genes), since ovulation in this species is concealed by the prolonged anogenital swelling, and because female bonobos can occupy high-ranking positions in the group and are thus able to determine mate choice more freely
    corecore