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Abstract

Genome-wide association studies (GWAS) identify genetic variants associated with traits or

diseases. GWAS never directly link variants to regulatory mechanisms. Instead, the func-

tional annotation of variants is typically inferred by post hoc analyses. A specific class of

deep learning-based methods allows for the prediction of regulatory effects per variant on

several cell type-specific chromatin features. We here describe “DeepWAS”, a new

approach that integrates these regulatory effect predictions of single variants into a
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multivariate GWAS setting. Thereby, single variants associated with a trait or disease are

directly coupled to their impact on a chromatin feature in a cell type. Up to 61 regulatory

SNPs, called dSNPs, were associated with multiple sclerosis (MS, 4,888 cases and 10,395

controls), major depressive disorder (MDD, 1,475 cases and 2,144 controls), and height

(5,974 individuals). These variants were mainly non-coding and reached at least nominal

significance in classical GWAS. The prediction accuracy was higher for DeepWAS than for

classical GWAS models for 91% of the genome-wide significant, MS-specific dSNPs.

DSNPs were enriched in public or cohort-matched expression and methylation quantitative

trait loci and we demonstrated the potential of DeepWAS to generate testable functional

hypotheses based on genotype data alone. DeepWAS is available at https://github.com/

cellmapslab/DeepWAS.

Author summary

In the era of steadily increasing amounts of available genetic data, we still lack novel and

innovative ideas on how to improve fine-mapping of regulatory variants identified by

genome-wide association studies (GWAS), especially in non-coding regions. Current

approaches for the identification of functional variants conduct functional annotation

after the GWAS analysis either using position-based overlaps of each variant with regula-

tory elements or deep-learning-based methods predicting regulatory effects per variant on

cell-type-specific chromatin features. We here present DeepWAS, which integrates these

regulatory effect predictions of single variants into a multivariate GWAS setting. Our

results provide evidence that DeepWAS results directly identify disease/trait-associated

SNPs with a common effect on a specific chromatin feature in a relevant tissue. We can

show for multiple sclerosis, major depressive disorder, and body height, that the SNPs

identified by DeepWAS are at least nominally significant in classical univariate GWAS

analysis of the same cohorts or larger published GWAS. By integrating expression and

methylation quantitative trait loci (eQTL and meQTL) information of multiple resources

and tissues, we can show that DeepWAS identifies disease/trait-relevant transcriptionally

active genomic loci. We demonstrate that DeepWAS identifies both known variants and

highlights underlying molecular mechanisms.

Introduction

Genome-wide association studies (GWAS) have been highly successful in identifying genetic

variants associated with risk for common diseases and traits. However, going from pure associ-

ation to mechanistic insight has been a much more challenging task. Identification of the true

causal variants in the context of a disease or trait from within regions of associated variants is

hampered by linkage disequilibrium (LD), as proximal variants are likely to co-segregate in a

population. The functional variants can, in most cases, not be easily discerned within long

stretches of such correlated DNA, which can span several genes and include hundreds of asso-

ciated variants.

Additional post-processing approaches, so-called functional GWAS, have been introduced

to provide missing functional annotation to classical GWAS [1]. The majority of published

functional GWAS are based on the positional overlap of single-nucleotide polymorphisms
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Jöckel, R. Erbel) was supported by the Heinz

Nixdorf Foundation. The genotyping of HNR

probands was financed through a grant of the
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(SNPs) with cis-regulatory elements such as promoters and enhancers (see Tak and Farnham

[2] for a comprehensive review). These functional GWAS indicate that, for common diseases,

the majority of associated SNPs reside in non-coding, regulatory regions [1]. One drawback of

these methods is that the actual impact of each variant on regulatory elements is not assessed,

as the annotation is based on positional overlap only. For example, two SNPs that localize to

the same chromatin immunoprecipitation with a massively parallel sequencing (ChIP-seq)

peak of a transcription factor (TF) might have the same, opposing, or no functional effects at

all [3]. To resolve this shortcoming, in silico approaches predicting the degree of disruption of

TF binding motifs have been used [4]. However, our understanding of the determinants of TF

binding to known sequence motifs is still incomplete, limiting the success of such methods.

Another post-processing approach to infer functional variants is the correlation of SNPs with

gene expression or DNA methylation data in the form of expression and methylation quantita-

tive trait locus (eQTL and meQTL) analyses [5]. Additional methods such as binding QTL

(bQTL) studies for TF binding [6] or massively parallel reporter assays (MPRAs) now add

experimental regulatory information on a single variant resolution [7], yet need to be per-

formed in the cell type of interest. While these approaches can indicate regulatory effects of

associated SNPs, they cannot identify single functional variants within an LD block.

Recent advances in systems genetics that harness the predictive power of deep learning

might enhance the performance of functional SNP prioritization methods. The deep learning

method “DeepSEA” uses only DNA sequence information to predict effects on regulatory

chromatin features, such as histone marks, TF binding, or the presence of open chromatin [8].

For this annotation method, experimental, publicly available data from the ENCODE project

[9] and the Roadmap Epigenomics Project [10] for cell type-specific TF binding, histone modi-

fications, and chromatin states were used. This type of functional sequence annotation is supe-

rior to post hoc, position-based overlap methods, as it computes allele-specific differences

regarding the effects of variants on regulatory elements and thus discerns SNPs with predicted

functional impact in a given cell type from those just residing within an annotated element by

chance. Importantly, the method allows for incorporating cell-type specific regulatory effects

of variants at baseline as well as under experimentally challenged conditions, adding additional

critical layers to understanding tissue- and context-specific disease mechanisms. This

approach was further enhanced to predict tissue-specific gene expression levels and to priori-

tize putative causal variants associated with human traits and diseases [11]. Recently, deep

learning was successfully applied to predict the impact of non-coding mutations in a family

with autism spectrum disorder [12] and the clinical impact of single human mutations [13].

However, in all studies published to date, such deep learning-based annotations have only

been applied post hoc to association results from classical GWAS.

We present a conceptually new approach fusing classical and functional GWAS. Instead of

the classical approach analyzing single SNPs individually, before filtering them in a separate

follow-up step for regulatory information, we here propose to first annotate SNPs for their reg-

ulatory potential, i.e., their affinity with a functional unit (FU) that is the combination of a spe-

cific chromatin feature, cell type, and treatment, before subjecting sets of SNPs with related

functionality jointly to association tests by using regularized regression models. This approach

is called multivariate FU-Wide Association Study (DeepWAS). It reduces the multiple testing

burden of classical GWAS and makes regulatory information on a single SNP level readily

available without requiring a second analysis step. We made use of the most recent predictions

for SNPs with regulatory potential, which will be constantly growing whenever new data

becomes available in the future. For a proof of concept of DeepWAS, we used data from pub-

lished GWAS of two common diseases, multiple sclerosis (MS) [14] and major depressive dis-

order (MDD) [15,16], as well as the quantitative trait of height [17], see Table 1. The

DeepWAS
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heritability of MS and MDD was estimated to be 64% and 40%, respectively [18], comparable

with other common diseases. The heritable nature of height is estimated to be between 70–

90% [19]. GWAS meta-analyses have already identified 180 genetic loci for height [20], 200 for

MS [21], and 102 independent loci for MDD [22]. We compared the results of DeepWAS in

smaller samples to the results from GWAS meta-analyses of the same phenotypes. This allowed

us to identify disease- or trait-associated FUs, generating novel supportive evidence for prior

knowledge on pathophysiology. We also complemented DeepWAS results with QTL networks

and generated novel testable hypotheses of disease mechanisms.

Results

Directly integrating regulatory information into genotype-phenotype

associations: The DeepWAS approach

To enable the integration of regulatory information into the classical GWAS setting, regulatory

information on a single SNP level is required. To retrieve a set of regulatory SNPs with effects

on cell type-specific chromatin features, we employed DeepSEA SNP effect predictions [8].

DeepSEA is a deep learning-based method where the effect of specific chromatin feature (e.g.,

transcription factor (TF) binding) on a 1,000 bp sequence is predicted in the context of a cell

type (e.g., GM10847), and a treatment (e.g., TNFα). We generated sequences of 1,000 bp

regions centered around each GWAS SNP position (eight million SNPs) for the two different

SNP alleles and used the pre-trained DeepSEA network to obtain allele-specific probabilities

for each FU (e.g., the FU “GM10847:NFκB-TNFα” was informed by all ChIP-seq peaks of the

TF NFκB treated with TNFα in the GM10847 cell line). For the present study, we used 919

pre-defined FUs (see S1 Table). We then employed the DeepSEA e-value metric that estimates

the impact of a SNP on the functional readout by comparing the allele-specific probabilities

per SNP to one million random SNPs from the 1,000 genomes project [23]. Only SNPs with

significant e-values (e-value<5×10−5) were thus selected as likely to be regulatory. This filter-

ing identified around 40,000 predicted regulatory SNPs, i.e., SNPs with effects in one FU. We

next grouped SNPs that are predicted to moderate the same FU, resulting in 919 SNP sets. The

rationale of this grouping on the level of FUs stems from the idea that the majority of available

chromatin features were TFs (85%, see S1 Table) and that one TF influences a specific cellular

function through accumulation of its downstream effects via multiple SNPs on a series of loci.

This optimized SNP selection improves the power to identify sets of functional SNPs that may

play a role in the etiology of the disease and maps them directly to a specific context–i.e., a cell

type, transcription factor, or stimulation condition.

Table 1. Summary of sample sizes and genotype information for all cohorts.

DeepWAS

Phenotype Data set Cohort Cases Controls Array Total samples Total analyzed SNPs FU dSNPs

MS KKNMS DE1 3,934 8,455 OMEX 15,283 7,968,337 637 53

DE2 954 1,940 I660

MDD MDDC recMDD 879 746 I550 3,627 8,768,555 237 61

BoMa 597 1,292 I550

height KORA S3 3,094 3,094 AFFY 5,866 8,460,286 381 43

S4 2,772 2,772 AFFY

MS = Multiple sclerosis, MDD = Major depressive disorder, OMEX = Illumina OmniExpress BeadChips, I660 = Illumina Human660W-Quad BeadChips,

I550 = Illumina HumanHap550-Quad BeadChips and AFFY = Affymetrix Human SNP Arrays.

https://doi.org/10.1371/journal.pcbi.1007616.t001
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To finally associate these regulatory SNPs with a disease or trait in a multivariate manner,

we employed L1-regularized (LASSO) linear regression per FU with its set of SNPs as predic-

tors. By using LASSO, we were able to jointly analyze SNPs and consider the association of

each SNP with the phenotype conditioned on all other SNPs. Especially with small cohort

sizes, LASSO might lead to different results across different runs. To enhance robustness of the

association results, we use the stability selection approach, that uses resampling to assess the

stability of selected SNPs. We further refer to the approach of multivariate FU-Wide Associa-

tion Study as DeepWAS. From all 919 FU models used in this proof of concept study, we

extracted the regulatory SNPs that showed a significant association and defined them as

dSNPs (see Materials and Methods and Fig 1). The DeepWAS approach identified SNP-phe-

notype associations directly in a cell type-specific regulatory context.

Application of DeepWAS

We conducted three genetic analyses on two case/control datasets and one population-based

cohort using the DeepWAS approach: we compared individuals suffering from either MS or

MDD to healthy controls in the case/control cohorts and analyzed the body height in the third

sample (Table 1), using the covariates sex, age, cohort membership, and ancestry components

to control for any remaining population substructure. First, we applied DeepWAS to an ade-

quately-powered GWAS dataset for MS (KKNMS GWAS, 15,283 individuals from two inde-

pendent MS case-control cohorts [14]) and found that 637 out of 919 FU models were

associated with at least one variant (see Fig 1B). Most models identified one dSNP per FU,

while 147 models identified two, three, or four dSNPs to jointly moderate a FU. In total, 53

unique MS-specific dSNPs, outside the major histocompatibility complex (MHC) region on

chromosome 6, were identified by DeepWAS. These dSNPs moderate 120 chromatin features

in 133 cell lines (see S2 Table). Note that 15 of the 53 dSNPs were in pairwise LD with each

other (r2�0.5), indicating that we identified 38 independent loci. 111 MS-specific dSNPs

mapped to the MHC region. In addition to MS, we analyzed underpowered GWAS data sets

for MDD (3,627 individuals recruited for recurrent MDD [15,16]) and height (5,866 individu-

als of the population-based KORA cohort [17]). Sixty-one MDD-specific dSNPs in 237 FUs

(S1A Fig and S3 Table) and 43 height-specific dSNPs in 381 FUs (S1B Fig and S4 Table) were

identified in these DeepWAS.

Loci identified by DeepWAS are concordant with loci found in cohort-

matched GWAS

To evaluate the convergence of DeepWAS and GWAS, (multi-SNP vs. single-SNP

approaches), we evaluated how many dSNPs mapped to cohort-specific results from classical

GWAS and to results of larger published meta-analysis of GWAS (Fig 2A). In the published

GWAS of the KKNMS dataset used in the present study, variants in the MHC region, as well

as variants at 15 loci outside of this region, were significantly associated with MS on a genome-

wide level [14]. Among these 15 loci 7 have at least one regulatory SNP. When comparing

KKNMS GWAS and DeepWAS results on a single SNP level, eleven of the 53 MS-specific

dSNPs or their LD proxies (r2�0.5) mapped to six independent loci (CLEC16A, MAZ, EVI5,

CD58, SHMT1, and an intergenic region on chromosome 10). The remaining dSNPs (n = 42)

showed an association strength with at least nominal significance in the original GWAS with

p-values�5.13×10−4, but did not reach genome-wide significance. To estimate the predictive

power of DeepWAS vs. GWAS, we first partitioned the KKNMS data into a training set (80%)

and a test set (20%). Next, DeepWAS models were fitted without stability selection on all puta-

tive regulatory SNPs and GWAS with logistic regression models for each genome-wide

DeepWAS
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significant KKNMS GWAS hit. We then calculated the area under the curve (AUC) of the

regression models for each SNP. The DeepWAS predictors had AUCs ranging from 0.59–0.66

(mean = 0.608 ± 0.009) in the test set, with the best predictor involving two variants. GWAS

AUCs ranged between 0.59–0.62 (mean = 0.601 ± 0.007) in the test set. For the SNPs that were

dSNPs and reached genome-wide significance in the KKNMS GWAS (n = 11), we directly

compared the AUC values. Only one SNP had a lower maximal AUC in our DeepWAS

Fig 1. Workflow of DeepWAS. (A): A deep-learning based framework predicts combined binding probabilities for

chromatin features, cell lines, and treatments, called functional units (FU) for 1,000 bp centered around a SNP. FUs are

selected for a potential functional role of a variant using a cutoff for functional scores. This process is repeated for all

genotyped variants. The genotype-phenotype association is analyzed for each FU using LASSO regression with stability

selection. Unlike GWAS, DeepWAS implicates a regulatory mechanism underlying the phenotype of interest with

information on relevant cell lines and TFs. (B): DeepWAS was applied to 36,409 regulatory SNPs that were retained

after filtering for allele-specific effects in any given FU. These SNPs were tested for an association with multiple

sclerosis (MS). The heatmap shows the number of selected chromatin features vs. cell lines. Chromatin features are

limited to be present in at least two distinct cell lines. Missing values, represented in white, show FUs for which no data

were available.

https://doi.org/10.1371/journal.pcbi.1007616.g001

DeepWAS
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Fig 2. Comparison of DeepWAS vs. GWAS results. (A): Bar plot of the overlap of cohort-matched GWAS and

consortia GWAS SNPs with dSNPs. g.-w. s = genome-wide significant. (B): Network of MS-specific dSNPs generated

by using a graph database and showing the dSNP rs62420820 in the K562 cell line, a genome-wide significant signal in

the IMSGC MS GWAS, but sub-threshold in the cohort-specific KKNMS GWAS. Edges represent the association

relation of dSNPs, chromatin features with or without treatment, cell lines, and top-level tissue group. (C): Bar plots

showing the predicted DeepSEA probabilities for dSNP sequences carrying the alternative and reference allele group

by their FU. (D-F): Locus-specific Manhattan plots of the MS-specific dSNPs rs62420820, rs12768537, and rs137969,

based on classical GWAS. Plots were produced using LocusZoom (https://github.com/statgen/locuszoom) with EUR

samples of the 1,000 genomes November 2014 reference panel on the hg19 build. Dots represent KKNMS GWAS p-

values and the diamond shows the IMSGC GWAS signal p-value. Color of the dots indicates LD with the lead

variant = dSNP (magenta), grey dots have LD r2 missing.

https://doi.org/10.1371/journal.pcbi.1007616.g002

DeepWAS
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approach (multi-SNP model) as compared to GWAS (single SNPs), indicating that, for 91% of

dSNPs in common with GWAS hits, prediction accuracy was higher using DeepWAS.

For MDD, 60 out of the 61 MDD-specific dSNPs or their proxies (r2�0.5) reached nominal

significance in a univariate GWAS from the same cohort (MDDC n = 3,627 individuals, no

genome-wide significant association).

All of the 43 height-specific dSNPs reached nominal significance in the classical GWAS in

the same cohort (KORA cohort n = 5,866 individuals, one genome-wide significant associa-

tion) with max. p-values�7.7×10−3.

The DeepWAS approach was, therefore, able to identify and validate disease relevant loci. It

is possible that these loci were too weak to be detected by cohort-matched GWAS. The obser-

vation that these loci nevertheless showed strong signals in DeepWAS, may indicate that Deep-

WAS takes advantage of the fact that conditional correlations of relevant SNPs with the

phenotype are often more significant than marginal correlations. However, future, larger case/

control cohorts need to be analyzed to fully assess this possibility.

DeepWAS validates loci identified by other GWAS

To further validate our results, we compared loci identified by DeepWAS with GWAS loci

identified by larger studies. The aim was to validate dSNPs in a separate GWAS. We used the

GWAS dataset of the International Multiple Sclerosis Genetics Consortium (IMSGC [24]) that

included over 47,000 MS cases (~10 times more cases than the KKNMS dataset) and 68,000

controls, and which identified 200 non-MHC genome-wide risk loci. We found that 129 of

these variants showed at least nominal significance in the cohort-matched GWAS and that 39

of the loci contained at least one regulatory SNP. Here, a total of 15 dSNPs mapped to ten inde-

pendent genome-wide significant GWAS loci: CLEC16A, EPS15L1, EVI5, CD58, LINC00271
as well as intergenic regions on chromosome 5 (nearby genes: LOC100505625 and PAPD7),
chromosome 10 (nearby genes: ZNF438 and ZEB1-AS1), chromosome 22 (nearby genes:

ENTHD1 and GRAP2), chromosome 11 (nearby genes: DRAP1 and TSGA10IP), and chromo-

some 6 (nearby genes: IL20RA and IL22RA2). Eight of these 15 dSNPs, corresponding to 4 out

of 10 loci, were also genome-wide significant in the KKNMS GWAS (CD58, EVI5, CLEC16A
and an intergenic region on chromosome 10). The top 10,000 IMSGC discovery stage GWAS

SNPs contained 23 dSNPs, which represents a 144-fold enrichment (permutation p<0.001)

over randomly sampled regulatory SNP sets (n = 36,409 regulatory SNPs).

No MDD-specific dSNPs overlapped with genome-wide significant MDD loci, but four

dSNPs were among the top 10,000 SNPs of the currently largest GWAS for MDD by the PGC

and UK BIOBANK [22] (which included 246,363 MDD cases and 561,190 controls and identi-

fied 102 genome-wide significant loci with eight loci showing nominal significance in the

cohort-matched GWAS; PGC GWAS dSNP max. p-value�2.8×10−4), which represents a

2.3-fold enrichment (permutation p-value = 0.094) over randomly sampled regulatory SNP

sets (n = 31,929 regulatory SNPs) and their LD proxies. These four dSNPs mapped to four

independent loci: LARP6-LRRC49, two intergenic regions on chromosome 7 (nearby genes:

WNT2 and ASZ1, and ATG9B and ABCB8) and a locus on chromosome 1 (nearby genes:

C1orf220 and MIR4424).

Eight of the 43 height-specific dSNPs mapped to seven independent genome-wide signifi-

cant loci (DIS3L2, ZBTB38, LCORL, PDLIM4, ZNF311, HABP4, and PXMP4) of the latest

GWAS from the GIANT Consortium, which included over 183,727 individuals and identified

180 genome-wide significant loci [20], with 40 loci nominally significant in the KORA data.

Eight dSNPs were among the top 10,000 GIANT GWAS SNPs, which represents a 32-fold
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enrichment (permutation p<0.001) over randomly sampled regulatory SNP sets (n = 34,661)

regulatory SNPs.

In all the three DeepWAS, this approach identified regulatory SNPs that overlapped not

only with SNPs associated with the same traits in the cohort-matched GWAS, but also with

genome-wide significant associations from the larger consortia GWAS for these traits. We

thus demonstrate that DeepWAS is powerful for detecting associations that did not reach

genome-wide significance in the smaller cohort-matched GWAS but could be validated in

larger studies.

Deriving hypotheses on disease-associated mechanisms in MS from

DeepWAS results

We next wanted to illustrate how DeepWAS can accelerate the discovery of disease mecha-

nisms. Within the DeepWAS results for MS, we identified, for example, the intergenic region

IL20RA-IL22RA2 on chromosome 6 that includes dSNP rs62420820 (Fig 2B), which was

genome-wide significant in the IMSGC GWAS (p-value = 9.26×10−36, Fig 2D) and nominally

significant in the KKNMS GWAS conducted on the MS cohort used for the DeepWAS analysis

(p-value = 1.23×10−5, Fig 2D). In comparison to the published GWAS-based results, Deep-

WAS adds the novel and testable hypothesis that the TFs MafF and MafK contribute to MS

susceptibility. The IMSGC GWAS and dSNP rs62420820 shows allele-specific TF binding dif-

ferences for MafF and MafK in the leukemia cell line K562 (Fig 2C). Of note, additional dSNPs

were identified within the FUs MafK:K562 (Fig 2B–2E: dSNP rs12768537 on chromosome 10

and Fig 2B–2F: dSNP rs137969 on chromosome 22) and MafF:K562 (dSNP rs12768537), sup-

porting a role of these TFs in the etiology of MS.

We also identified dSNPs that were detected at a genome-wide significance level by both

the cohort-matched KKNMS and the IMSGC GWAS. This included dSNP rs1985372 on chro-

mosome 16, located in the CLEC16A locus, previously suggested as a candidate gene for MS

(the dSNP rs1985372 was significant in the KKNMS GWAS on the same cohort [14] and is in

complete LD with the SNP rs2286974 (r2 = 0.99), which was reported in the IMSGC GWAS

[24]). DeepWAS now adds the regulatory information that these SNPs alter TF binding of

GABP, GATA-1, GATA-2, p300, STAT1, STAT2, STAT5A, and TBLR1, all expressed in K562

cells, and that these TFs play a MS-specific role in the regulation of CLEC16A.

Characterization of dSNPs

We followed these results up by further characterizing the identified dSNPs from the three

independent analyses. DSNPs for MS and height were more likely to be located in intronic

regions (32–33% dSNPs in first or other introns) while dSNPs for MDD were more likely to

cluster in distal intergenic regions (>3 kb = 53% vs.>3 kb = 36–37% for MS and height,

respectively). MS- and MDD-specific dSNPs were never found within coding regions (Fig 3A).

DSNPs were always identified in a cell-type specific manner. We thus interrogated the cell

type specificity on the level of tissue category, in order to reduce complexity (Fig 3B). Note

that tissue categories were influenced by the richness of investigated cell types per category.

For example, the tissue group blood encompassed 79 cell types, while brain contained only 14

tissues. Overall, more tissue groups were identified when the number of identified dSNPs

increased. Interestingly, compared to MS and MDD, a lower number of identified dSNPs for

height were relevant in brain tissues. At the same time, a larger number of height dSNPs were

active in pancreatic tissue. Notably, an association of height with pancreatic cancer has previ-

ously been shown [25].
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As DeepWAS includes only a limited number of histone marks, we next overlapped dSNPs

with predicted chromatin states from the 15-state ChromHMM model [26] (Fig 3C). For both

DeepWAS cell types (ENCODE) and 111 epigenomes, we used top-level tissue categories to

overlap dSNPs with chromatin state predictions in the respective matched tissues. We

observed tissue- and context- (disease or trait) specific roles of chromatin states. Most of the

MS-specific dSNPs mapped to active chromatin states (82%, see Fig 3C), suggesting that they

play a role in regulating transcriptional activities and active processing of RNA and DNA. For

MDD-specific dSNPs, a larger fraction overlapped with repressive marks (43%, see Fig 3C),

indicating an important role for silencing gene functions.

To investigate the tissue specificity of the genomic loci around dSNPs and to extend the

number of disease-relevant tissues, we further tested if our dSNPs and their proxies (r2�0.5)

were enriched in the loci of genes expressed in a tissue-specific manner by leveraging Fantom

CAGE data [27]. MS-specific dSNPs were significantly enriched in the regions active in differ-

ent immune cell types, height-specific dSNPs in skeletal muscle cells, pericytes, and also a

Fig 3. Functional characterization of DeepWAS hits. (A): Annotation of the genomic regions in which dSNPs are located: 63–87% of the genomic positions

of dSNPs overlapped with non-coding DNA elements. Seventeen of 53 MS-specific (32%), 14 of 43 height-specific (33%) and 8 of 61 MDD-specific (13%)

dSNPs mapped to introns (first and other introns). Over a half of the MDD-specific dSNPs (53%) resided in distal intergenic regions (>3 kb). None of the MS-

and MDD- specific dSNPs were located in exons. (B): Bar plots for each phenotype showing the number of unique dSNPs annotated to a top-level tissue

category (ENCODE). (C): Overlap of MS-, MDD-, and height-specific dSNPs with ChromHMM states from Roadmap epigenomes based on top-level tissue

group matching. Most of our MS- and height-specific dSNPs mapped to predicted active chromatin states (82–86%), whereas nearly half of MDD-specific

dSNPs mapped to inactive chromatin states (43%). (D) Tissue enrichment with FANTOM gene expression data. The top 15 significantly enriched tissues are

shown (all p-values�0.05).

https://doi.org/10.1371/journal.pcbi.1007616.g003
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pancreatic carcinoma cell line, and MDD-specific dSNPs in neurocytoma as well as in different

brain regions and immune cells (p-value�0.05, see Fig 3D).

Regulatory effect of MS-specific dSNP loci

Allele-specific effects on chromatin features and TF binding are likely to be reflected by

changes in DNA methylation and gene expression. To test whether the MS-specific dSNPs or

their proxies (r2�0.5) were associated with differences in gene expression and DNA methyla-

tion, we used publicly available cis-meQTL, cis-eQTL, and cis-eQTM data from multiple

resources: 1) The Biobank-Based Integrative Omics Study (BIOS [28]) analyzing whole blood

(>2000 samples), the CommonMind Consortium (CMC [29]) dorsolateral prefrontal cortex

data (DLPFC) (n = 603 samples), and GTEx data [30]. In the largest resource, BIOS, we

observed that 36 of the 53 non-MHC, MS-specific dSNPs were significant meQTLs (68%) and

20 significant eQTLs (38%), which represents a 1.7- and 1.9-fold enrichment over randomly

sampled regulatory SNPs and their assigned LD proxies, respectively (permutation p-

values�0.011, see Fig 4A and S2 Table). We next restricted DeepWAS hits to dSNPs moderat-

ing immune cell lines (n = 13 dSNPs, 46 chromatin features, 4 cell lines and 50 FUs, S2 Table),

given the relevance of this tissue in MS [21]. Of this subset of 13 immune MS-specific dSNPs,

62% (n = 8 dSNPs) overlapped with meQTL variants (meSNP) and 38% (n = 5 dSNPs) with

eQTL variants (eSNP) in BIOS. In their recent study, the IMSGC identified significant eQTL

effects in naive CD4+ T cells and monocytes for only 18% of their significant GWAS loci [21].

When overlapping our immune MS-specific dSNPs with the same QTL data sets, we found

43% (n = 23 SNPs) of these dSNPs to be part of eQTLs in CD4+ T cells and 38% (n = 20

dSNPs) in monocytes. In addition to publicly available data, we also conducted an eQTL analy-

sis using blood gene expression levels from a subset of 319 MS patients of the MS cohort. In

total, 47% (n = 25 dSNPs) of the MS-specific dSNPs showed a significant eQTL effect in this

data (Fig 4A and S2 Table), of which 14 dSNPs had previously been identified as part of eQTLs

in blood. In the GTEx database, we found 42% of these dSNPs to have a significant effect on

blood eQTLs (S2 Table).

Taken together, QTL data from various resources support that the DeepWAS of MS-identi-

fied SNPs reside in transcriptionally relevant regions, emphasizing their putative regulatory

role in immune function. Moreover, we applied Combined Annotation Dependent Depletion

(CADD) [31] to identify pathogenic variants. Seven MS-specific dSNPs showed PHRED scores

>10, indicating seven pathogenic variants (13%). For all regulatory MS SNPs (n = 36,298), we

found 4,898 pathogenic SNPs (13%).

Regulatory effects of MDD and height dSNP loci

The 61 MDD- and 43 height-specific dSNPs were also transcriptionally active in the respective

relevant tissues (see Fig 4A and S3 and S4 Tables) and tagged more BIOS eQTLs and meQTLs

than expected by randomly sampling of regulatory SNPs and assigning their LD proxies

(MDD: fold enrichment for eQTLs = 1.7 and meQTLs = 1.5, permutation p-value = 0.009 and

0.015, respectively; height: fold enrichment for eQTL = 1.5 and meQTLs = 1.5, permutation p-

value = 0.068 and 0.013, respectively, see Materials and Methods). For a subset of both the

MDDC and the KORA cohort, methylation levels and/or expression levels were measured.

We, therefore, calculated meQTL and eQTL effects and found 16% of MDD-specific dSNPs

with significant meQTL effects, 65% of the height-specific dSNPs with meQTL and 33% with

eQTL effects (see Fig 4A and S3 and S4 Tables).
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Disease mechanisms on the level of functional units

While DeepWAS can be used to predict the phenotype from the genotype, it is also interesting

to annotate the relationship of FUs to a disease or trait. For example, MS is an immune-medi-

ated disorder affecting the central nervous system (CNS). Naturally, the CNS is difficult to

directly examine as a study tissue. DeepWAS might here be used to identify a good proxy

study tissue.

Moreover, DeepWAS results can be used to identify single SNPs as key regulators, i.e.,
SNPs with effects on multiple chromatin features. DeepWAS identified, for example, the inter-

genic dSNP rs175714 on chromosome 14 as a key regulator for MS (Fig 5A and 5B). It affects

the binding of multiple chromatin features at the same time (n = 29) in 116 cell types (Fig 5A

and 5B). One of these chromatin features is the TF MAZ. MAZ itself is one of the top-associ-

ated loci of the KKNMS GWAS (tag SNP rs34286592 on chromosome 16, p-value = 4.58×10−-

10), but no significant transcriptional effect was previously identified in a post hoc analysis of

the GWAS [14]. Interestingly, the MS-specific dSNP rs175714, together with the MS-specific

dSNP rs11000015 on chromosome 10, had a significant effect on the binding of MAZ and they

were jointly associated with MS disease status. The dSNP rs11000015 was correlated with

expression levels of the Prosaposin (PSAP) gene in multiple tissues, whole blood gene

Fig 4. Context-related regulatory capacity of dSNPs. (A): Heatmap showing the percentage of overlap of MS-, MDD-, and height-specific dSNPs or their

proxies (r2�0.5) with cis-meQTL and cis-eQTL data from multiple resources, see also S2–S4 Tables. (B): Heatmap depicting GTEx tissue groups and DeepWAS

top-level tissue category overlap among the MS-specific dSNP FUs.

https://doi.org/10.1371/journal.pcbi.1007616.g004

DeepWAS

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007616 February 3, 2020 12 / 28

https://doi.org/10.1371/journal.pcbi.1007616.g004
https://doi.org/10.1371/journal.pcbi.1007616


expression levels of PSAP are shown in Fig 5C. PSAP codes for Prosaposin, a precursor of sev-

eral small nonenzymatic glycoproteins termed sphingolipid activator proteins that assist in the

lysosomal hydrolysis of sphingolipids [32]. Sphingolipids are the main components of nervous

tissue and have been previously linked to MS [33]. Moreover, PSAP has been shown to be dif-

ferentially expressed in the whole blood of MS patients compared to controls [34].

Fig 5. QTL network. (A) Network showing one of the putative key regulators for MS, dSNP rs175714 on chromosome

14. DSNP rs175714 is associated with differential TF binding of the TF MAZ, one of the top-associated loci in the

KKNMS GWAS, where no significant transcriptional effect could be identified in the post hoc analysis. Edges represent

the associations between dSNPs and chromatin features with or without treatment, cell lines, top-level tissue group,

CpGs, and genes through dummy nodes identified either using DeepWAS or QTLs. Dummy nodes are used for

preserving all entities of dSNP and QTL associations. Edges highlighted in red show the DeepWAS results for MAZ, in

yellow show the eQTL connections illustrated in B, and shades refer to downstream QTL results shown in B. (B)

Box plot of GTEx whole blood eQTL data showing the relationship between PSAP gene expression and dSNP

rs11000015 genotype. (C-D) Chromatin feature probabilities for the significant FU of the dSNP sequences carrying the

reference (black) and alternative (gray) allele.

https://doi.org/10.1371/journal.pcbi.1007616.g005
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Another example is the TF MEF2C in the analysis of MDD, where DeepWAS identified the

intergenic SNP rs7839671 on chromosome 8 as one of the key regulators for MDD (see S2

Fig). MEF2C is an important risk gene for MDD and the MEF2C gene itself is one of the top-

associated loci of the PGC GWAS for MDD [22]. SNP rs7839671 and its proxies were associ-

ated with differences in mRNA expression of SPIDR and MCM4 and were part of meQTLs

with an intergenic region (for more details, see S2 Fig). The MEF2 TF family has been reported

to play a major role in synaptic plasticity, which is thought to be disturbed in MDD, especially

in the context of stress. Chen and colleagues [35] identified the TF MEF2 as a master regulator

of developmental metaplasticity, which is important for guiding developmental structural and

functional neuronal plasticity. Additional evidence was found by Barbosa et al.[36], relating

MEF2 to activity-dependent dendritic spine growth and suggesting that this TF may suppress

memory formation.

QTL network analyses

In-depth investigation of the wealth of additional regulatory capacities of dSNPs were carried

out by generating QTL networks that combine all pairwise links of meQTL (SNP-CpG), eQTL

(SNP-gene), eQTM (CpG-gene), and dSNP-FU information. QTL network analyses helped us

to identify the SNPs that showed joint effects on epigenetic and transcriptomic levels, i.e.,
dSNP = eSNP = meSNP where the dSNP harbors an eQTM. The resulting networks are called

three-way QTL interaction networks. Three MS-specific dSNPs on chromosome 17,

rs2273030, rs4925172 (both in complete LD with each other r2 = 1), and rs7207666 (r2 = 0.7)

are located in the SHMT1 locus, a candidate gene for MS [14,21] (S3A Fig). The genetic vari-

ants and SHMT1 are connected via eQTL, meQTL, and eQTM relations (S3B Fig). In compari-

son to the previously published findings on the locus, DeepWAS informs that the TF Yin Yang

1 (YY1), expressed in multiple cell lines, may lead to a downregulation of SHMT1 gene expres-

sion and hypermethylation of cg25492364 and cg26763362, thus connecting the disease-asso-

ciated SNPs with specific regulatory functions.

Moreover, a three-way QTL interaction network analysis identified the height-specific

dSNP rs7146599 on chromosome 14 to affect a cascade of eight chromatin features in eleven

cell lines (see S4A Fig). The network also included rs2871960 on chromosome 3, linked to the

ZBTB38 locus and correlated with multiple CpG sites. ZBTB38 has been previously shown to

play an important regulatory role in height [37].

Thee-way QTL interaction network analysis identified the MDD-specific dSNP rs163105

on chromosome 5 to alter the expression of SKIV2L2 (also known as MTR4). This gene has

already been shown to be differentially expressed between depressed women and controls [38]

(see S4B Fig). Furthermore, SKIV2L2 has been implicated in the stress response and neurode-

generation through the nuclear exosome-targeting (NEXT) complex [39].

In summary, DeepWAS allows for the direct identification of putative master regulators,

TFs and chromatin features, for subsequent in-depth analysis of genetic association signals.

Discussion

In classical GWAS, the association of all SNPs is tested independently of each other on a

genome-wide scale, thereby implicitly assuming that any SNP could affect the function of any

cell state at any time. It is now clear that disease associations, especially for common disorders,

are driven by SNPs that influence the function of regulatory elements. Hence, it is likely not

necessary to test all SNPs in GWAS, instead, functional annotation could be used to prioritize

putative risk variants. So far, several post hoc functional annotations of GWAS results have

been reported [40]. Here, we present DeepWAS, a novel analysis tool for genetic associations
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that fuses classical GWAS and functional annotation into one single step (Fig 1). We employed

the powerful deep learning-based method DeepSEA to predict regulatory effects of chromatin

features in various cell types on a single SNP level. In addition, we implemented multi-SNP

regression models with L1 regularization to identify so-called dSNPs. The SNPs of one FU

were only selected when jointly associated with the disease or trait. To the best of our knowl-

edge, this study is the first to combine deep learning-based predictors with multivariate mod-

els. By applying DeepWAS to three data sets, we showed that this method allows direct fine-

mapping of GWAS associations at a single-base resolution and for direct functional annotation

of the association signals to both chromatin features and cell types, generating novel mechanis-

tic hypotheses. We also demonstrated that DeepWAS might increase the power to detect true

positive signals, by pre-selecting functionally relevant SNPs and integrating multivariate

statistics.

We applied DeepWAS to a well-powered GWAS dataset for MS (n = 15,283 individuals)

and to an underpowered GWAS data for MDD (n = 3,627 individuals) and height (n = 5,866

individuals). In all three phenotypes, many SNPs in many genes contribute to genetic variation

in the population and the effect size of each SNP outside the MHC region is small [41]. There-

fore, large sample sizes are needed to discover additional risk variants. We identified 35 puta-

tive new candidate MS risk SNPs outside of the MHC region that did not reach genome-wide

significance in GWAS (in total: 53 non-MHC, MS-specific dSNPs). For MDD, DeepWAS pri-

oritized 57 new putative risk variants (in total: 61 MDD-specific dSNPs) and, for height, 35

new risk variants (in total: 43 height-specific dSNPs), even though the classical GWAS

approach for MDD and height did not yield genome-wide significant results. Importantly,

when comparing the dSNPs identified in these smaller cohort-matched GWAS to large con-

sortia GWAS of the same phenotype, DeepWAS detected SNPs that reached genome-wide sig-

nificance in these large consortia GWAS but not in smaller GWAS of the samples used for

DeepWAS (Fig 2). Importantly, all dSNPs were associated at least with nominal significance in

cohort-matched GWAS, with a subset of dSNPs reaching genome-wide significance. Interest-

ingly, when comparing dSNPs to the larger consortia GWAS, DeepWAS detected SNPs that

reached genome-wide significance in these GWAS but not in the smaller-scale GWAS on the

individual cohorts (Fig 2). For example, 23% of the 53 MS-specific dSNPs were previously

identified in the ISMGC MS GWAS including more than 135,000 individuals (n>47,000 MS

cases). One-third of these dSNPs were not detected in the univariate KKNMS GWAS using

the same cohorts as in DeepWAS (n>15,000 individuals).

By jointly analyzing SNPs, DeepWAS considers the correlation of each SNP with the phe-

notype, conditional on all other relevant SNP within an FU. This may increase the power to

detect weak associations compared to GWAS (single SNP approach) because the conditional

correlation of a SNP with the phenotype can often be substantially higher than the marginal

correlation. DeepWAS, therefore, models the underlying biology more accurately, by explicitly

modeling the polygenic architecture of complex phenotypes to account for the effects of multi-

ple susceptibility loci. The increased power of DeepWAS is underlined by the observation that

when, for example, all regulatory MS SNPs (n = 36,409 SNPs), without grouping to FUs, were

used as input to a single LASSO regression model with stability selection, only 19 SNPs showed

a significant association with MS (S5 Fig), of which four mapped outside the MHC region.

This is in contrast to the 164 MS-specific dSNPs identified using DeepWAS, of which 53 were

outside of the MHC region. Notably, these 36,409 SNPs resided in only 25,000 independent

loci, which is also reflected by the fact that 16 out of 53 MS dSNPs were not independent of

each other. The regulatory genotypes have, thus, little correlation, and can be subjected to L1

penalization. Additional penalization by the meta-parameter L2 (alpha) did not significantly

improve the DeepWAS approach (S5 Fig) and is more difficult and time-consuming. In
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summary, DeepWAS can increase the power to detect associations of a phenotype with regula-

tory variants. Genome-wide significant consortia GWAS variants were detected using Deep-

WAS in smaller samples, where the variants only showed sub-threshold signals using classical

GWAS. As outlined below, functional analyses of identified dSNPs suggest that the additional

signals discovered using DeepWAS but not using classical GWAS reside within known, dis-

ease-relevant functional pathways and thus likely constitute true-positive associations.

Particularly for non-coding regulatory SNPs, DeepWAS has an advantage over GWAS fol-

lowed by post hoc annotation and allows identifying transcriptionally relevant regions in the

disease context (Figs 2–5). In fact, in all three DeepWAS, dSNPs were identified in cell types

and enhancers previously shown to be relevant for the tested phenotype. For example, 47% of

the MS-specific dSNPs (n = 35) affected the binding of chromatin features in hematopoetic tis-

sue, and another 30% affected chromatin features in brain tissue or spinal cord (n = 16; Fig

3B). These findings highlighted that genetic disease risk is driven by the altered binding of

chromatin features mainly in these two tissues.

DeepWAS results also pointed towards convergent regulatory mechanisms of specific TFs

in both MS and MDD. For both disorders, DeepWAS identified a set of SNPs modulating

binding of a TF that was found in GWAS to be associated with the disorders. This result sug-

gests that SNPs associated with the gene encoding the TF and SNPs altering its binding to tar-

get transcripts jointly affect the phenotype. The gene MAZ on chromosome 16, for example,

has been previously identified as a genome-wide significant GWAS locus for MS [14]. Deep-

WAS identified several dSNPs that include the TF MAZ in a FU (Fig 5). As a second example,

we identified MDD-specific dSNPs altering the binding of TF MEF2C (S2 Fig). SNPs in the

locus encoding MEF2C are the top signal in meta-analyses for major depression [22].

To support the validity of the predicted regulatory effects of our DeepWAS associations, we

provided multiple lines of evidence that dSNPs and their surrounding loci are indeed function-

ally active in their respective tissue. We chose to prioritize DeepWAS results based on the addi-

tional regulatory impact of DNA methylation and gene expression, as shown by their meQTL

and eQTL effects. DeepSEA, together with eQTL data, has been previously applied to prioritize

disease-associated variants [11]. We observed that 68% of MS-specific dSNPs were meQTLs

and 38% eQTLs in the largest QTL resource, BIOS. When using only random sets of regulatory

SNPs with no disease association, no such overlap was found. For all investigated phenotypes,

we observed a significant overlap between dSNPs and meQTL SNPs (Fig 4, fold enrichment

�1.5 and permutation p-value over 1,000 random sets� 0.015. For MDD- and MS-specific

dSNPs, we found a significant overlap with eQTL SNPs (Fig 4, fold enrichment�1.5 and per-

mutation p-value over 1,000 random sets� 0.011). Moreover, as MS is a disorder developing

in the peripheral immune system, we investigated if our dSNPs alter the expression of CD4+ T

cells or influence the expression in monocytes, and found twice as many eQTL effects for

dSNPs as described in the published IMSGC GWAS for MS (43% in CD4+ T cells and 38% in

monocytes found using DeepWAS vs. 18% in both cell types in the IMSGC GWAS). Using

expression profiles from GTEx, we found more MS-specific dSNPs for blood eQTL SNPs than

in brain-related eQTL SNPs (42% vs.11%). This supports the theory that MS is most likely ini-

tially triggered by perturbation of immune responses, but that also the functional responses of

brain cells are altered and may have a role in targeting an autoimmune process to the CNS.

Finally, we explored whether generating QTL interaction networks of our dSNPs and

extracting the SNPs with an impact on methylation and expression, which also coincidently an

eQTM, can help identify likely functional risk mechanisms. We identified dSNPs in the

SHMT1 gene, a published MS GWAS locus [14], where DeepWAS QTL network analysis pin-

points the TF Ying Yang 1 (YY1), expressed in multiple cell lines including immune related

cells, as a potential novel risk factor (S3 Fig). YY1 is a ubiquitously expressed TF shown to be
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essential for B cell development [42] and serves as master regulator of T cell exhaustion [43].

Such dysregulation of immune related cells has been shown to promote MS progression [44].

Additional SNP-protein association studies (pQTLs) [45] that showed how the dSNP

rs2273030 alters YY1 protein abundances could be extended to develop clinical applications in

the context of MS.

DeepWAS is mostly limited by the comprehensiveness of regulatory element catalogues

like ENCODE and Roadmap. ENCODE lacks, for example, information for a number of rele-

vant disease-specific stimulation conditions as well as disease-related tissues. We have previ-

ously reported on the importance of testing SNPs in stimulated conditions, and shown that

glucocorticoid response-moderating SNPs only become apparent in the stimulation condition

and are not overlapping with baseline eQTLs [46]. Of note, the glucocorticoid receptor itself is

central for the stress response and has been previously implicated in the pathogenesis of MDD

[46]. In addition, data from cell lines or bulk tissues will miss variants with effects only on spe-

cific cell types, as well as cell type-specific effects dependent on the systemic, developmental,

and/or tissue context. It is, therefore, important to be able to retrain the DeepSEA neural net-

work with additional publicly available chromatin features and with newly generated experi-

mental data. This will be possible using the DeepWAS pipeline publicly available at https://

github.com/cellmapslab/DeepWAS.

In summary, our results indicate that DeepWAS, a method combining deep learning-based

functional SNP annotation and considering a possible multivariate effect of SNPs to moderate

a trait or disease, is a powerful tool to uncover disease mechanisms for common disorders and

traits. It also allows direct identification of regulatory SNPs by having a single base resolution

and not being limited by the LD structure of the locus, since the regulatory SNPs are mostly

independent and because regulatory SNPs are analyzed jointly only if they are predicted to

modulate the same FU. With ever-increasing amounts of available functional data, the Deep-

WAS approach will become even more valuable in the figure and will allow integration of both

publicly as well as unpublished data generated by individual labs. DeepWAS is a versatile, pub-

licly available tool that can be applied to any GWAS dataset in conjunction with the code avail-

able for DeepSEA. While we tested DeepWAS in small and medium-size samples and

observed a potential increase in power in detecting phenotype-relevant functional SNPs,

applying this method to very large data sets will be even more informative.

Materials and methods

Ethics statement

All responsible ethics committees have provided positive votes for the individual studies. All

study participants gave written informed consent.

Clinical samples

Major depressive disorder cohorts (MDDC). Two MDD cohorts, recMDD and BoMa,

were analyzed. The recMDD cohort consisted of 1,774 Caucasian individuals recruited at the

Max-Planck Institute of Psychiatry (MPIP) in Munich, Germany and two satellite hospitals in

the Munich metropolitan area (BKH Augsburg and Klinikum Ingolstadt): 756 controls (581

women, 275 men) and 879 cases diagnosed with recurrent major depression (585 women, 294

men). Please see Muglia et al. [15] for more details on sample recruitment and characteriza-

tion. The BoMa cohort consisted of 1,889 Caucasian individuals: 1,292 controls (656 men, 636

women), 597 (212 men, 385 women) of which had a depressive disorder. Recruitment strate-

gies and further characterization have been described previously [16].
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Multiple sclerosis cohorts (KKNMS). MS cohorts, referred to as DE1 and DE2, were ana-

lyzed. Both data sets included patients diagnosed with either MS or the prodromal clinically

isolated syndrome. DE1 consists of 3,934 cases and DE2 consists of 954 cases; for more details

see Andlauer et al. [14]. Controls for these cohorts were obtained from several cohorts across

Germany, for more details see Andlauer et al. [14].

Population-based cohort (KORA). The study population consisted of participants from

the KORA (Kooperative Gesundheitsforschung in der Region Augsburg) study [17], which

has been collecting clinical and genetic data from the general population in the region of Augs-

burg, Germany for more than 20 years. Here, the independent cohorts S3 (3,094 individuals)

and S4 (2,772 individuals), including their follow-ups (F3 and F4), were analyzed.

Genotype data

Genotype data was generated for each cohort individually, see Table 1. Details on the methods

used can be found in the individual papers (recMDD [15], BoMa [16], KKNMS [14], and

KORA [17]). Quality control (QC) of KKNMS genotype data and imputation have been previ-

ously described [14] and the same pipeline was applied for KORA and recMDD genotype

data. The QC was conducted in PLINK 1.90b3s or higher (https://www.cog-genomics.org/

plink2) for each cohort separately. QC steps on samples for KKNMS, KORA, and recMDD

included removal of individuals with a missing rate>2%, cryptic relatives (PI-HAT>0.0125),

an autosomal heterozygosity deviation (|Fhet|>4 SD), and genetic outliers (distance in the

ancestry components from the mean >4 SD). QC steps on variants included removal of vari-

ants with a call rate<98%, a MAF <1%, and HWE test p-values�10−6. Furthermore, variants

on non-autosomal chromosomes were excluded. QC steps for BoMa included removal of vari-

ants with a call rate<95%, individuals with a missing rate >2%, an |Fhet|<0.2, a difference in

variant missingness between cases and controls <2%, variants with a MAF<1%, and variants

with HWE test p-values�10−6 in controls or p-values�10−10 in cases. All non-autosomal

chromosomes were excluded. Imputation was performed separately for each cohort with

IMPUTE2 (https://mathgen.stats.ox.ac.uk/impute/impute_v2.html), following phasing in

SHAPEIT (https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html), using the

1,000 genomes phase I reference panel (released in June 2014, all samples). QC of imputed

probabilities was conducted in QCTOOL 1.4 (http://www.well.ox.ac.uk/~gav/qctool/).

Imputed SNPs were excluded if MAF <1%, HWE test p-values�10−6, or an INFO metric

<0.8. SNP coordinates are given according to hg19.

Statistical analyses of genotype data (GWAS)

GWAS for MDD were conducted separately on the two MDD cohorts, recMDD and BoMa.

The GWAS for height was carried out using the population-based cohorts of KORA S3 and S4.

PLINK was used for these GWAS. Multidimensional scaling (MDS) on the identity-by-state

matrix was conducted separately on each GWAS cohort to calculate the ancestry components.

For height, the number of consecutive MDS components cumulatively explaining at least 80%

of the genetic variance were selected as covariates (n = 8) and for MDD, the number of MDS

components was selected based on Cattell’s scree test (n = 3). Sex, age, and MDS components

were used as covariates in logistic or linear regression. Data sets were combined using a fixed-

effects meta-analysis in METAL (http://csg.sph.umich.edu/abecasis/metal/). The same covari-

ates were retained for analysis with the DeepWAS method. For MS, the published GWAS

results were used [14].
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Prediction of regulatory effects using DeepSEA

We employed DeepSEA [8], a deep learning model, to determine the SNPs that potentially

play an important role in human traits or diseases by acting through the alteration of regula-

tory elements. DeepSEA predicts the binding effect of chromatin features to a given sequence

of 1,000 bp, which has been shown to significantly improve the model performance compared

to smaller window sizes (for details please see [8]). For a specific SNP this is done for both SNP

alleles. DeepSEA reaches test set median AUCs of 0.899 for transcription factors, 0.862 for

DNase I-hypersensitive sites, and 0.811 for histone marks. All the 919 DeepSEA chromatin fea-

tures representing regulatory information derived from the profiles of the ENCODE project

[9] were considered as FUs (S1 Table). These units covered combinations of 201 different

experimental annotations of epigenetically relevant information. This data included 690 TF

binding profiles for 160 different TFs, 125 Dnase I hypersensitive site (DHS) profiles, and 104

histone mark profiles across 31 cell lines and 17 treatment conditions. The pre-trained Deep-

SEA network (v0.94) was downloaded from http://deepsea.princeton.edu/help/ and the pre-

dictions and corresponding significance values of the regulatory effects, so-called e-values, of

the set of all SNPs from three GWAS data sets were generated using an NVIDIA GeForce GTX

TITAN X graphics processing unit (GPU) (Maxwell). Significance was assessed by the method

proposed by Zhou & Troyanskaya [8], which uses one million random SNPs from the 1,000

genomes project [23] as a background distribution to calculate e-values for each FU, by assess-

ing the proportion of random variants with a bigger effect than that of observed variants. We

applied an e-value cutoff of 5×10−5, to only take the SNPs associated with at least one FU into

consideration (e.g., rs1035271 in GM12878:MEF2C). We refer to this set of SNPs as having a

predicted regulatory effect.

DeepWAS

Penalized regression models. Compared to the classical GWAS approaches where the

trait of interest (y) is regressed separately on each SNP j (Xj), the regularized polygenic regres-

sion approaches provide an alternative way to model the joint effect of a set Sk of SNPs (j�Sk).
For the present proof of concept study of DeepWAS, we obtained k = 1. . .919 sets Sk of SNPs

per functional unit FU from DeepSEA predictions. In order to identify both the most likely

mechanism of action for a trait or disease and related regulatory SNPs jointly, we fitted L1-reg-

ularized logistic or linear regression (LASSO) with stability selection per FU, i.e., 919 separate

regression models. For simplicity, we further describe only one single FU model of index k
without subscripting, for example, the estimated coefficients β, which are separately estimated

per model k. Linear models fitted to datasets with a continuous response y, like height, are

denoted as:

y ¼
X

j�Sk

ðb
snp
j XjÞ þ b

sexsexþ bageageþ bcohortcohort þ
Xn

l¼1

ðb
mds
l mdslÞ þ b0 þ �;

where Xij represent the SNP matrix of i individuals and j SNPs and sex, age, cohort and mds are

vectors with index i. The genotypes in the X matrix is encoded using the dosage representation

of each SNP in an additive model, such that the final encoding of a SNP is Xij = 2 × P(AAij) + P
(Aaij), where P(AAij) and P(Aaij) are probabilities for being homozygous and heterozygous for

the minor allele, respectively, for individual i and SNP j. Xij is, therefore, a continuous value

between 0 and 2. In addition to the SNP predictors, we used sex (sex, binary), age (age, contin-

uous), a cohort dummy index (cohort), and MDS ancestry components (mdsl, where l repre-

sents the MDS ancestry component index, continuous) as covariates. The response vector y

DeepWAS

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007616 February 3, 2020 19 / 28

http://deepsea.princeton.edu/help/
https://doi.org/10.1371/journal.pcbi.1007616


represents the disease or trait status of interest. In each of the k LASSO models, only the SNPs j
that significantly affect a specific chromatin feature in a specific cell line were included (j�Sk).
This is represented in the equation by the summation over the elements of Sk, which represents

the set of SNPs j that has an impact on the FU Sk. For logistic regression models, the right-

hand side of the linear regression model, without the � noise term, models the probability of y
to be 1 (for binary outcomes), using the binomial distribution function to link it to the binary

outcome.

All model parameters (β) of the linear regression for a continuous phenotype were opti-

mized with L1 regularization, where the λ parameter represents the strength of the regulariza-

tion. We fitted LASSO models using glmnet (https://cran.r-project.org/web/packages/glmnet/

index.html) and stabs (https://cran.r-project.org/web/packages/stabs/index.html) R packages.

The stability selection method provides a robust feature selection by taking the uncertainty of

feature selection into account, using subsets or bootstrapped subsamples of data sets. The regu-

larization parameter λ is determined within the stability selection procedure, based on a pro-

vided probability cutoff and per-family error rate (PFER) values [47]. Note that, unlike the

family-wise error rate and false discovery rate, which define a probability and an expected pro-

portion, respectively, PFER defines the expected number of false positives and hence can be

above 1.0. In total, n = 100 subsample replicates were used for each model fit with a subsample

size of bn/2c. The probability cutoff represents how frequently a variable must be selected in

LASSO models fitted to these replicates in order to be called a dSNP (an example is shown in

S6 Fig). For more details of the relationship between the λ parameter, the probability cutoff,

and PFER values please see [48].

We decided to use LASSO regression instead of Elastic Net (EN), as the correlation between

regulatory SNPs was low, i.e., of the 36,409 SNPs that were predicted to be regulatory for the

imputed, high-quality MS SNP set, 26,155 (72%) were uncorrelated (r2<0.2, assessed via pair-

wise LD calculations using a window size of 50 SNPs and a shift parameter of 5), with a mean

r2 per FU ranging from 0.001 to 0.3. As already reported in [49], LASSO and EN do not differ

significantly in their SNP selection for weakly correlated SNPs. Within the MS regulatory SNP

set, almost all SNPs identified by LASSO were also found with EN (96–99% overlap, see S5

Fig), which was also the case for the selected FUs. Furthermore, the fine-tuning of the EN meta

parameter L2 (alpha) is more difficult and time-consuming, increasing the danger of overfit-

ting (for more details please see [49]).

DeepWAS application. DeepWAS was conducted on the KKNMS dataset for MS, on the

MDDC dataset for MDD, and on the KORA dataset for height, see Table 1. Sex, age, cohort

membership, and selected MDS ancestry components were used as covariates in DeepWAS.

“stabsel” function from the stabs R package was used to identify significant trait associations

(dSNPs). “cutoff”, “PFER” and “fitfun” parameters of “stabsel” function, which denote the

selection probability cutoff, per-family error rate and LASSO fitting method were set to 0.7, 1.0

and “glmnet.lasso”, respectively. We identified independent SNPs that are dSNPs and inde-

pendent from each other by pruning SNPs using the PLINK"–indep-pairwise" command (set-

tings: window size 50 kb, step size 5, r2> 0.5).

DeepWAS vs. GWAS

KKNMS genotype data was randomly split into a training (80%, n = 12,227 individuals) and a

test set (20%, n = 3,056 individuals). The AUC values were evaluated based on the test set and

measured by using the “prediction” and “performance” functions of the ROCR R package. For

DeepWAS, we fitted a LASSO model for each FU (n = 444 FUs) based on the training set

including all covariates. We tuned λ by a ten-fold cross-validation (CV) method using the “cv.
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glmnet” function from the glmnet R package. The “lambda.min” parameter, which denotes the

value of λ that gives minimum mean cross-validated error, was extracted and used for predic-

tion. For GWAS, we fitted a logistic regression model including all covariates mentioned

above using the “glm” function for each genome-wide significant KKNMS GWAS hit (n = 606

SNPs).

Functional annotation of dSNPs

Annotation of dSNPs with ENCODE tissue categories. ENCODE cell type information

was downloaded from https://genome.ucsc.edu/encode/cellTypes.html and tissue categories

were extracted from the column “tissue”.

Roadmap cis-regulatory elements (ChromHMM). Cis-regulatory elements identified by

the Roadmap Epigenomics Project [10] were downloaded as segmentation files of core

15-state ChromHMM model for 111 epigenomes from the Roadmap epigenomics web portal

(http://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/

coreMarks/jointModel/final/all.mnemonics.bedFiles.tgz) in BED format. ChromHMM used

five core marks (H3K4me3, H3K4me1, H3K36me3, H3K27me3, H3K9me3) from each of the

111 reference epigenomes and learned a set of 15 chromatin state definitions per genomic seg-

ment. We overlapped the DeepWAS SNPs with chromatin states based on the exact genomic

position. All roadmap epigenomes were grouped into broader tissue groups, which were used

for mapping between DeepWAS and ChromHMM results.

Genomic region annotation. DeepWAS SNPs were overlapped with genomic annotation

from UCSC for the hg19 genome build using TxDb.Hsapiens.UCSC.hg19.knownGene (https://

bioconductor.org/packages/release/data/annotation/html/TxDb.Hsapiens.UCSC.hg19.

knownGene.html) and ChIPseeker (https://www.bioconductor.org/packages/release/bioc/

html/ChIPseeker.html) Bioconductor R packages.

Tissue enrichment of dSNPs with SNPsea and FANTOM5 CAGE data. Tissue enrichment

was performed with the command line interface of SNPsea version 1.0.3 (https://github.com/

slowkow/snpsea/). All data and annotation files were the default ones provided by SNPsea (tis-

sue-specific gene expression from ~400 cell types), namely the FANTOM2014.gct.gz gene

expression file was used with default NCBIgenes2013.bed.gz, TGP2011.bed.gz, Lango2010.txt.gz
values for “gene-intervals”, “snp-intervals”, and “null-snps” options, respectively.

Pathogenic annotation. Pathogenic annotation was performed using the CADD

webserver.

DNA methylation data

For a subset of the MDDC cohort (n = 166 recMDD cases), genomic DNA was extracted from

whole blood using the Gentra Puregene Blood Kit (QIAGEN). DNA quality and quantity of

both was assessed with the NanoDrop 2000 Spectrophotometer (Thermo Scientific) and

Quant-iT Picogreen (Invitrogen). Genomic DNA was bisulfite converted using the Zymo EZ-

96 DNA Methylation Kit (Zymo Research) and DNA methylation levels were assessed for

>480,000 CpG sites using the Illumina HumanMethylation450K BeadChips. Hybridization

and processing were performed according to the manufacturer’s instructions. QC of methyla-

tion data, including intensity readouts, filtering (detection p-value>0.01 in at least 75% of the

samples), cellular composition estimated using FlowSorted.Blood.450k data and “estimateCell-

Counts” function, as well as beta calculation (“getBeta” function) were done using the minfi
Bioconductor R package (https://bioconductor.org/packages/release/bioc/html/minfi.html).

CpG sites on sex chromosomes, CpG site probes found to have SNPs at the CpG site itself or

in the single-base extension site with a MAF�1% in the 1,000 genomes project EUR
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population and non-specific binding CpG site probes according to [50] were removed. We

performed a re-alignment of the CpG site probe sequences using Bismark (https://www.

bioinformatics.babraham.ac.uk/projects/bismark/). This yielded 425,883 CpG sites for further

analysis. The data were then normalized using functional normalization (“preprocessFun-

norm” function in minfi). Technical batch effects were identified by inspecting the association

of the first principal components of the methylation levels with plate and plate position. The

data were then adjusted using “ComBat” function of the Bioconductor R package sva (https://

bioconductor.org/packages/release/bioc/html/sva.html). CpG coordinates are given according

to hg19.

DNA methylation data was also available for a subset of the KORA study (n = 1,802 F4 indi-

viduals). Here, DNA methylation was measured with the Illumina HumanMethylation450K

BeadChips. Sample preparation and measurement have been described previously [51]. Inten-

sity values were extracted from the idat files using minfi, with subsequent background correc-

tion performed with lumi Bioconductor R package (https://bioconductor.org/packages/

release/bioc/html/lumi.html). CpG site probes with a detection p-value >0.01 or summarized

by less than 3 functional beads were set to missing. A sample-wise call rate of 80% was applied,

and color bias adjustment using smooth quantile normalization was performed. Finally, beta

mixture quantile normalization was performed on the probes (“BMIQ” function in Biocon-

ductor R package watermelon [https://bioconductor.org/packages/release/bioc/html/

wateRmelon.html]) to correct for the Inf I/Inf II distribution shift.

Gene expression data

Gene expression analysis of a subset of the KKNMS cohort (n = 319 DE1 MS cases) was per-

formed using lllumina HT-12 v4 Expression BeadChips, as described in [14]. For a subset of

the KORA cohort (n = 1,002 F4 individuals) gene expression profiling was performed using

the Illumina HT-12 v3 Expression BeadChips and described previously in [52].

Statistical analysis of gene expression and methylation data

For the MDDC cohort, linear regression models were fit for each CpG site to test the relation-

ship between the whole blood DNA methylation (beta values) and proximal SNP genotype (in

dosage format) within 1Mb up- or downstream of the SNP using the R package MatrixEQTL
(https://cran.r-project.org/web/packages/MatrixEQTL/index.html), in order to detect cis-
meQTLs. Sex, blood cell counts, and MDS ancestry components to correct for possible admix-

ture effects were included as covariates. Significance after multiple testing was adjusted using a

false discovery rate (FDR) of 5%.

For the whole blood cis-meQTL analysis in the KORA cohort we used the OmicAbel soft-

ware (https://github.com/GenABEL-Project/OmicABEL) with age, sex, and blood cell counts

as covariates. A total of 1,731 individuals had valid methylation and genetic data available. Sig-

nificance was defined using Bonferroni correction at a p-value of 1×10−14. To examine the rela-

tionship between proximal genetic variation and gene expression, i.e. cis-eQTLs, in KORA

(n = 711 individuals with valid genetic and expression data), we first derived residuals for gene

transcript expression using linear regression of log2-transformed gene transcript levels against

sex, age, the RNA integrity number, RNA amplification plate, and sample storage time.

Expression residuals were then used as outcome variables in a linear regression model with

SNP dosage as the independent variable. Data analysis was performed using MatrixEQTL and

significant cis-eQTLs were filtered at an FDR of 5%.

For the whole blood cis-eQTL analysis in the KKNMS cohort, we used MatrixEQTL with

sex, age, blood cell counts estimated using R package CellCODE (http://www.pitt.edu/~
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mchikina/CellCODE/), and MDS ancestry components as covariates. Significance after multi-

ple testing was adjusted using an FDR of 5%.

Using published QTL data from BIOS whole peripheral blood DNA of 3,841 and mRNA of

2,116 healthy samples [28] (eQTL, meQTL, expression Quantitative Trait Methylation, i.e.
eQTM), downloaded from http://genenetwork.nl/biosqtlbrowser, CMC eQTLs [29] down-

loaded from https://www.synapse.org/#!Synapse:syn4622659, and GTEx eQTLs [30] down-

loaded from https://gtexportal.org/home/datasets, we were able to intersect our dSNPs and

their LD proxies (r2�0.5) with transcriptionally relevant data. The eQTLs obtained from

GTEx were filtered on gene p<0.05 and eQTLs obtained from BIOS and CMC were filtered

on FDR<0.05. We used permutation tests to determine if dSNPs or their LD proxies were

enriched in BIOS QTLs. For each phenotype, we compared the overlap of dSNPs and BIOS

QTL SNPs to the average overlap from 1,000 equally-sized sets of regulatory SNPs and BIOS

QTL SNPs.

QTL network

For the visualization of dSNP-QTL interactions, we set up a Neo4j v3.4.0 instance (https://

neo4j.com). All DeepWAS results were inserted into the database. The graph structure con-

sisted of genes, transcription factors, CpGs, SNPs, cell lines, and tissues that were connected to

each other through dummy nodes representing each dSNP. Dummy nodes are especially

important in cases where a dSNP is predicted to be active in more than one FU, e.g., TF1:CL1

and TF2:CL2. In this case, connecting these four elements directly to the dSNP leads to ambi-

guity about the FU, which can be misinterpreted as TF1:CL2 or TF2:CL1, since the informa-

tion of the FU would be lost. Using dummy nodes avoids this confusion by providing a

SNP-FU link.

Supporting information

S1 Fig. Heatmaps of selected chromatin features vs. cell line for MDD and height. The heat-

maps show the number of selected chromatin features vs. cell line for (A) MDD and (B) height

dSNPs. Chromatin features are limited to be at least present in two distinct cell lines.

(PDF)

S2 Fig. MDD DeepWAS results involving the TF MEF2C and its functional annotation.

(A) Graph-based QTL Network visualization of the DeepWAS results involving the TF

MEF2C, which itself is one of the top associated PGC GWAS loci. Two dSNPs are jointly asso-

ciated with MDD and belong the same FU: MEF2C:GM12878. Edges represent the association

relation of dSNPs, chromatin features with or without treatment, cell lines, top-level tissue

group, CpGs, and genes. Edges of the FU MEF2C:GM12878 are colored in red. Circular shades

mark the corresponding genes or CpGs with are plotted in B and C. (B) Box plot of GTEx

frontal cortex eQTL data showing relationship between SPIDR gene expression and dSNP

rs7839671. (C) Boxplot of recMDD meQTL data illustrating relationship between cg01650371

methylation and rs10099827 genotype in recMDD samples. Variant rs10099827 is a proxy of

dSNP rs7839671 (r2 = 0.8). DSNP rs7839671 exhibits a meQTL effect on the same CpG and

was excluded from the original meQTL. analysis, as it is 571 kb away from the CpG site

(meQTL distance cutoff�250 kb).

(PDF)

S3 Fig. MS GWAS and DeepWAS results for rs2273030 and its functional annotation. (A)

Locus-specific Manhattan plot of the dSNP rs2273030 that is a sub-threshold GWAS SNP for

MS. The plot is produced using LocusZoom (https://github.com/statgen/locuszoom). with

DeepWAS
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EUR samples of the 1,000 genomes November 2014 reference panel on the hg19 build. Dots

represent GWAS p-values and the color of dots indicates LD with the lead variant, grey dots

have LD r2 missing. (B) MS-specific three-way QTL interaction network generated by using a

graph database and highlighting only the dSNPs with eQTL and meQTL effects that also har-

bor an eQTM. Edges represent the association relation of dSNPs, chromatin features with or

without treatment, cell lines, top-level tissue group, CpGs, and genes.

(PDF)

S4 Fig. Three-way QTL interaction network. (A) Height-specific three-way QTL interaction

network highlighting dSNP rs7146599 on chromosome 14 as one of the moderators of height

in eleven cell lines. It affects a cascade of chromatin features (n = 8) and shows meQTL and

eQTL effects that, at the same time, harbor an eQTM. The CpG site and the dSNP thus affect

the transcriptional level of the same genes. In addition, the network includes rs2871960 on

chromosome 3, linked to the ZBTB38 locus and correlated with multiple CpG sites. Edges rep-

resent the association relation of dSNPs, chromatin features with or without treatment, cell

lines, top-level tissue group, CpGs, and genes. (B) MDD-specific three-way QTL interaction

network generated by using a graph database and highlighting only the dSNPs with eQTL and

meQTL effects that also harbor an eQTM. It shows that the MDD-specific dSNPs rs163105 on

chromosome 5 changes the expression of SKIV2L2 (also known as MTR4). Edges represent the

association relation of dSNPs, chromatin features with or without treatment, cell lines, top-

level tissue group, CpGs, and genes.

(PDF)

S5 Fig. Comparison of LASSO vs. Elastic Net. The LASSO picked out the smallest number of

SNPs (n = 164 SNPs in 708 FU). The EN with penalty weight α = 0.1 (EN01) selected 169

SNPs in 710 FU, EN with α = 0.5 (EN05) selected 174 SNPs in 709 FU and EN with α = 0.75

(EN075) selected 169 SNPs in 706 FU. The single LASSO regression (SLR) (all regulatory MS

SNPs without grouping to FUs) identified 19 SNPs showing a significant association with MS,

these SNPs were also part of the sets of selected SNPs by either LASSO or EN.

(PDF)

S6 Fig. LASSO stability selection results for FU MEF2C-GM12878. The y-axis indicates

number of boosting iterations, the x-axis indicates the stability selection probability, and the

horizontal line correspond the 0.7 probability threshold.

(PDF)

S1 Table. List of all functional units.

(XLSX)

S2 Table. DeepWAS results for MS and functional annotation.

(XLSX)

S3 Table. DeepWAS results for MDD and functional annotation.

(XLSX)

S4 Table. DeepWAS results for height and functional annotation.

(XLSX)
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