71 research outputs found

    Effect of temperature and illumination on the electrical characteristics of polymer-fullerene bulk-heterojunction solar cells

    Get PDF
    The current-voltage characteristics of ITO/PEDOT:PSS/OC1C10-PPV:PCBM/Al solar cells were measured in the temperature range 125-320 K under variable illumination, between 0.03 and 100 mW cm(-2) (white light), with the aim of determining the efficiency-limiting mechanism(s) in these devices, and the temperature and/or illumination range(s) in which these devices demonstrate optimal performance. (ITO: indium tin oxide; PEDOT:PSS: poly(styrene sulfonate)-doped poly(ethylene dioxythiophene); OC1C10-PPV: poly[2-methoxy-5-(3,7-dimethyl octyloxy)-1,4-phenylene vinylene]; PCBM: phenyl-C-61 butyric acid methyl ester.) The short-circuit current density and the fill factor grow monotonically with temperature until 320 K. This is indicative of a thermally activated transport of photogenerated charge carriers, influenced by recombination with shallow traps. A gradual increase of the open-circuit voltage to 0.91 V was observed upon cooling the devices down to 125 K. This fits the picture in which the open-circuit voltage is not limited by the work-function difference of electrode materials used. The overall effect of temperature on solar-cell parameters results in a positive temperature coefficient of the power conversion efficiency, which is 1.9% at T = 320 K and 100 mW cm(-2) (2.5% at 0.7 mW cm(-2)). The almost-linear variation of the short-circuit current density with light intensity confirms that the internal recombination losses are predominantly of monomolecular type under short-circuit conditions. We present evidence that the efficiency of this type of solar cell is limited by a light-dependent shunt resistance. Furthermore, the electronic transport properties of the absorber materials, e.g., low effective charge-carrier mobility with a strong temperature dependence, limit the photogenerated current due to a high series resistance, therefore the active layer thickness must be kept low, which results in low absorption for this particular composite absorber

    Precipitation Over Southern Africa: Moisture Sources and Isotopic Composition

    Get PDF
    Southern Africa, with its vast arid to semiarid areas, is considered vulnerable to precipitation changes and amplifying weather extremes. However, during the last 100 ka, huge lakes existed in the currently dry central Kalahari. It has been suggested that these lakes could have existed due to altered atmospheric circulation pattern, leading to an increase in precipitation or to changes in the annual precipitation distribution. Past climate changes are recorded in paleo-archives, yet, for a proper interpretation of paleo-records, for example, from sedimentological archives or fossils, it is essential to put them in a context with recent observations. This study’s objective is, therefore, to analyze spatially differing annual precipitation distributions at multiple locations in southern Africa with respect to their stable water isotope composition, moisture transport pathways, and sources. Five different precipitation distributions are identified by end-member modeling and respective rainfall zones are inferred, which differ significantly in their isotopic compositions. By calculating backward trajectories, different moisture source regions are identified for the rainfall zones and linked to typical circulation patterns. Our results furthermore show the importance of the seasonality, the amount effect, and the traveled distance of the moisture for the general isotopic composition over the entire southern Africa. The identified pattern and relationships can be useful in the evaluation of isotope-enabled climate models for the region and are potentially of major importance for the interpretation of stable water isotope composition in paleo-records in future research

    Evidence for an Adaptation of a Phage-Derived Holin/Endolysin System to Toxin Transport in Clostridioides difficile

    Get PDF
    The pathogenicity locus (PaLoc) of Clostridioides difficile usually comprises five genes (tcdR, tcdB, tcdE, tcdA, tcdC). While the proteins TcdA and TcdB represent the main toxins of this pathogen, TcdR and TcdC are involved in the regulation of their production. TcdE is a holin family protein, members of which are usually involved in the transport of cell wall-degrading enzymes (endolysins) for phage-induced lysis. In the past, TcdE has been shown to contribute to the release of TcdA and TcdB, but it is unclear whether it mediates a specific transport or rather a lysis of cells. TcdE of C. difficile strains analyzed so far can be produced in three isoforms that are initiated from distinct N-terminal ATG codons. When produced in Escherichia coli, we found that the longest TcdE isoform had a moderate effect on cell growth, whereas the shortest isoform strongly induced lysis. The effect of the longest isoform was inhibitory for cell lysis, implying a regulatory function of the N-terminal 24 residues. We analyzed the PaLoc sequence of 44 C. difficile isolates and found that four of these apparently encode only the short TcdE isoforms, and the most closely related holins from C. difficile phages only possess one of these initiation codons, indicating that an N-terminal extension of TcdE evolved in C. difficile. All PaLoc sequences comprised also a conserved gene encoding a short fragment of an endolysin remnant of a phage holin/endolysin pair. We could produce this peptide, which we named TcdL, and demonstrated by bacterial two-hybrid analysis a self-interaction and an interaction with TcdB that might serve to mediate TcdE-dependent transport

    Quantitative assessment of the asphericity of pretherapeutic FDG uptake as an independent predictor of outcome in NSCLC

    Get PDF
    Background The aim of the present study was to evaluate the predictive value of a novel quantitative measure for the spatial heterogeneity of FDG uptake, the asphericity (ASP) in patients with non-small cell lung cancer (NSCLC). Methods FDG-PET/CT had been performed in 60 patients (15 women, 45 men; median age, 65.5 years) with newly diagnosed NSCLC prior to therapy. The FDG-PET image of the primary tumor was segmented using the ROVER 3D segmentation tool based on thresholding at the volume-reproducing intensity threshold after subtraction of local background. ASP was defined as the relative deviation of the tumor’s shape from a sphere. Univariate and multivariate Cox regression as well as Kaplan-Meier (KM) analysis and log-rank test with respect to overall (OAS) and progression-free survival (PFS) were performed for clinical variables, SUVmax/mean, metabolically active tumor volume (MTV), total lesion glycolysis (TLG), ASP and “solidity”, another measure of shape irregularity. Results ASP, solidity and “primary surgical treatment” were significant independent predictors of PFS in multivariate Cox regression with binarized parameters (HR, 3.66; p < 0.001, HR, 2.11; p = 0.05 and HR, 2.09; p = 0.05), ASP and “primary surgical treatment” of OAS (HR, 3.19; p = 0.02 and HR, 3.78; p = 0.01, respectively). None of the other semi-quantitative PET parameters showed significant predictive value with respect to OAS or PFS. Kaplan-Meier analysis revealed a probability of 2-year PFS of 52% in patients with low ASP compared to 12% in patients with high ASP (p < 0.001). Furthermore, it showed a higher OAS rate in the case of low versus high ASP (1-year-OAS, 91% vs. 67%: p = 0.02). Conclusions The novel parameter asphericity of pretherapeutic FDG uptake seems to provide better prognostic value for PFS and OAS in NCSLC compared to SUV, metabolic tumor volume, total lesion glycolysis and solidity

    Crustal structure of the Niuafo’ou Microplate and Fonualei Rift and Spreading Center in the northeastern Lau Basin, Southwestern Pacific

    Get PDF
    Key points: First insights into the crustal structure of the northeastern Lau Basin, along a 290 km transect at 17°20’S. Crust in southern Fonualei Rift and Spreading Center was created by extension of arc crust and variable amount of magmatism. Magmatic underplating is present in some parts of the southern Niuafo’ou Microplate The northeastern Lau Basin is one of the fastest opening and magmatically most active back‐arc regions on Earth. Although the current pattern of plate boundaries and motions in this complex mosaic of microplates is reasonably understood, the internal structure and evolution of the back‐arc crust are not. We present new geophysical data from a 290 km long east‐west oriented transect crossing the Niuafo’ou Microplate (back‐arc), the Fonualei Rift and Spreading Centre (FRSC) and the Tofua Volcanic Arc at 17°20’S. Our P‐wave tomography model and density modelling suggests that past crustal accretion inside the southern FRSC was accommodated by a combination of arc crustal extension and magmatic activity. The absence of magnetic reversals inside the FRSC supports this and suggests that focused seafloor spreading has until now not contributed to crustal accretion. The back‐arc crust constituting the southern Niuafo’ou Microplate reveals a heterogeneous structure comprising several crustal blocks. Some regions of the back‐arc show a crustal structure similar to typical oceanic crust, suggesting they originate from seafloor spreading. Other crustal blocks resemble a structure that is similar to volcanic arc crust or a ‘hydrous’ type of oceanic crust that has been created at a spreading center influenced by slab‐derived water at distances < 50 km to the arc. Throughout the back‐arc region we observe a high‐velocity (Vp 7.2‐7.5 km s‐1) lower crust, which is an indication for magmatic underplating, which is likely sustained by elevated upper mantle temperatures in this region

    Interlaboratory comparison of methodologies for measuring the angle of incidence dependence of solar cells

    Get PDF
    The aim of this work is to compare angle of incidence (AOI) measurement setups for solar cells between laboratories with such capability. For the first time, we compare relative light transmission measurements among eight laboratories, whose measurement techniques include indoor and outdoor methods. We present the relative transmission measurements on three 156 mm x 156 mm crystalline-Si (c-Si) samples with different surface textures. The measurements are compared using the expanded uncertainties provided by each laboratory. Five of the eight labs showed an agreement better than ±2% to the weighted mean between AOIs from -75° to 70°. At AOIs of ±80° and ±85°, the same five labs showed a worst case deviation to the weighted mean of -3% to 5% and 0% to 18%, respectively. When measurement uncertainty is considered, the results show that measurements at the highest incidence angle of ±85° are problematic, as measurements from four out of the six labs reporting uncertainty were found non-comparable within their stated uncertainties. At 85° AOI a high to low range of up to 75% was observed between all eight laboratories
    corecore