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ABSTRACT — The aim of this work is to compare angle of incidence (AOI) measurement setups for solar cells 

between laboratories with such capability. For the first time, we compare relative light transmission measurements among 

eight laboratories, whose measurement techniques include indoor and outdoor methods. We present the relative 
transmission measurements on three 156 mm x 156 mm crystalline-Si (c-Si) samples with different surface textures. The 

measurements are compared using the expanded uncertainties provided by each laboratory. Five of the eight labs showed 

an agreement better than ±2% to the weighted mean between AOIs from -75° to 70°. At AOIs of ±80° and ±85°, the same 

five labs showed a worst case deviation to the weighted mean of -3% to 5% and 0% to 18%, respectively. When 
measurement uncertainty is considered, the results show that measurements at the highest incidence angle of ±85° are 

problematic, as measurements from four out of the six labs reporting uncertainty were found non-comparable within their 

stated uncertainties. At 85° AOI a high to low range of up to 75% was observed between all eight laboratories. 

 
 

1 INTRODUCTION 

 

Intercomparisons between laboratories are important 
to ensure reliable and accurate measurements to the 

highest level of confidence. Laboratories have different 

methods, equipment setups and procedures, and it is of 

great value to assess the comparability of their results. 
Moreover, the IEC 61853-2 standard, which provides 

procedures on how to conduct AOI measurements on PV 

devices was recently published [1]. Thus, a round-robin 

on AOI measurements will allow us to validate the newly 
adopted standard, provide feedback to standardization 

bodies, and establish a baseline that future round-robin 

campaigns can improve upon. The results from this 

intercomparison will provide data which will be used in a 
future study to investigate the impact of measurement 

deviation on modelling and energy prediction. 

The core objective of this work is to determine the 

level of agreement in the relative transmissivity 
measurements performed at eight laboratories for each 

angle of incidence ɵ. The relative transmissivity is 

commonly referred to in other works as the incidence 

angle modifier (IAM). The range of angles extends from 
-85o to +85o in steps of 5o. The results are analyzed using 

the En number statistical method as outlined in ISO 

17043:2010 [2]. This approach is commonly used in 

proficiency testing and it provides insight to the 
equivalence of the participating laboratories’ test results. 

The data obtained from the participating laboratories is 

analyzed with the following objectives: (i) evaluate 
whether the measurement deviations from the weighted 

mean are within each partner laboratory’s stated 

uncertainties; (ii) validate if the procedures stipulated by 

the existing IEC 61853-2 result in comparable 

measurements when different measurement techniques 

are used; and (iii) determine the main sources of 
uncertainty that contribute to non-agreement of measured 

values between partners. 

Although numerous round-robin programs have been 

conducted for PV measurements at Standard Test 
Conditions (STC) [3-5], the literature shows 

comparatively few works on round-robins or laboratory 

comparisons of angular dependent measurements. The 

intercomparisons of AOI measurements to date have 
compared a limited number of laboratories and methods. 

For example, the authors in [6] compared outdoor 

measurements performed in real-time at Sandia National 

Laboratories (SNL) and CFV Solar Test Lab, which lay 
roughly 10 km apart from each other. These two labs 

used unique methods to measure the AOI response of 

full-sized PV modules and found an acceptable level of 

agreement between their measurements. The authors in 
[7] compared AOI measurements again performed at 

SNL on full-sized PV modules to the IAM data for the 

same modules in PVsyst’s database, or to measurements 

performed at an unnamed third party lab. The authors 
found that these three sources often had significant 

deviations for the same module type, up to a 14% 

difference in relative transmissivity at large AOIs. In this 

work, we present the AOI measurements made on three 
unique single cell (156 x 156 mm) laminates by eight 

European laboratories. The measurement systems 

encompass five different light sources including one lab 
that performed the measurements outdoors.   
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2 EXPERIMENTAL DETAILS 
 

2.1 Partner laboratories and procedures 

Eight scientific institutions from six European 
countries are involved in the measurement comparison. 

These include the Department of Photonics Engineering 

at the Technical University of Denmark (DTU Fotonik), 

Physikalisch Technische Bundesanstalt (PTB), the 
Energy Research Centre of the Netherlands (ECN>TNO), 

the Centre for Renewable Energy Systems Technology 

(CREST) at Loughborough University, the Spanish 

National Renewable Energy Centre (CENER), the 
Laboratory of Photovoltaic Solar Energy PVLab at 

CIEMAT, the University of Applied Sciences and Arts of 

Southern Switzerland (SUPSI), and Fraunhofer Institute 

for Solar Energy Systems (ISE). A brief description of 
each laboratory’s measurement setup is described in 

Table I [8-11].  

The measurement systems used at CREST, 

ECN>TNO, Fraunhofer ISE and SUPSI are based on a 
flash system used for full-sized modules. However, each 

one of these labs used a different approach to build the 

rotation stage. The rotation stage at ECN>TNO, for 

example is only capable of holding small laminates 
(roughly 20 x 20 cm), while the CREST, Fraunhofer ISE, 

and SUPSI rotation stages can accommodate small 

laminates up to full-sized modules. The CIEMAT and 

DTU systems are only capable of testing single cell 
laminates and the PTB system can accommodate mini-

modules with up to four 156 x 156 mm cells. DTU was 

the only laboratory that performed the test with a light 

source that did not cover the full active cell area (i.e. the 
diameter of the collimated light beam in the DTU system 

was 12 mm). The two-axis tracker at CENER can 

accommodate full-sized module and since single cell 

laminates were used as the devices under test (DUTs) in 

this round-robin, they utilized the tracker’s area to 

perform the test on all DUTs at once.   

All the participant laboratories were asked to use 

their standard techniques for AOI measurements. The 
axis of rotation was predefined in order to allow the 

results from the different partners to be directly 

comparable. The definition for which angular direction 

was positive and negative was made explicitly clear in a 
memorandum document that all partners received. The 

document also specified the location of the rotational axis 

and tolerances for the precise location of the front of the 

PV cell surface within the laminate. The samples made 
for this round-robin have an offset of approximately 1.5 

mm ±0.5 mm from the rear side (back sheet) to the front 

surface of the PV cell. The participant laboratories were 

encouraged to use this tolerance when mounting the 
samples in their measurement system, although larger 

deviations from the rotational axis to the center of the PV 
cell would be acceptable for the outdoor measurement 

system. 

The physical quantity measured by the partner labs is 
the short circuit current (ISC) of each DUT over the 

specified angular range. The data of ultimate interest, 

however, are the relative transmissivity τ(ɵ) values. The 

relative transmissivity τ(ɵ) - sometimes referred to as the 
IAM - represents the percentage of in-plane direct beam 

irradiance available to the PV cell for conversion to 

electricity. The τ(ɵ) is calculated by normalizing the ISC 

measured at each angle to the ISC value measured at 
normal incidence. No procedures were provided to the 

partner labs as to how to correct for fluctuations in the 

test environment during the measurement (e.g. spectrum, 

irradiance or temperature) and instead it was left up to 
each partner to use their standard correction approach. A 

common temperature coefficient for ISC was provided to 

the partner labs in the case temperature corrections were 

necessary.   
 

2.2 Devices under test (DUT) 

The round-robin includes measurements of three 

different PV devices in duplicate (i.e. each lab measures 
six DUTs in the total). Redundant samples were used so 

there would always be a backup in the case that any one 

sample became damaged. Electroluminescence (EL) 

images were taken before each laboratory started testing 
to ensure that no damage occurred during transportation. 

The analysis of EL images taken before the first lab’s 

measurement and after the final lab’s measurement 

showed that no cell damage had occurred during 
transportation. However, the glass of one sample was 

damaged about halfway through the campaign, which 

highlights the necessity of duplicate samples in round-

robin campaigns. The measurements made on the 

damaged sample are not published here.  

All DUTs have the following specifications: (i) An 

active cell area of 156 mm x 156 mm; (ii) full area 

dimensions of 200 mm x 200 mm; (iii) 3.2 mm thick 
finely textured PV glass superstrate; (iv) ethylene-vinyl 

acetate (EVA) encapsulant; (v) two tabs as metal 

contacts; and (vi) a flat polymeric backsheet with slight 

curvature around the cell edges. The differences between 
the DUTs are the cell types and cell texturing. Two DUTs 

are mono-crystalline standard silicon; two DUTs are 

multi-crystalline black silicon textured under reactive ion 

etch (RIE) treatment (referred to as ‘Black-Si A’ 
hereafter) [12]; and two DUTs are multi-crystalline black 

silicon textured under atmospheric pressure dry etching 

(ADE) treatment (referred to as ‘Black-Si B’ hereafter) 

[13]. The edges of samples were covered with non-
transparent tape to prevent measurement artifacts at large 

TABLE I: Description of participating laboratory measurement systems [8-11]. 

Laboratory 
Test 

condition 
Rotation stage Description of light source 

CENER Outdoor 1-axis, 0° to 90°, Automated Natural sunlight. Diffuse directly measured 

CIEMAT Indoor 1-axis, +90° to -90°, Automated Continuous collimated broadband halogen lamp (1kW DXW) 

CREST Indoor 1-axis, +90° to -90°, Automated Pasan 3b flasher with broadband Xe arc lamp (class AAA) 

DTU Indoor 1-axis, +90° to -90°, Automated Energetiq (EQ-99FCX) broadband laser driven light source 
ECN>TNO Indoor 1-axis, +90° to -90°, Manual Pasan flasher with broadband Xe arc lamp (class AAA) 

Fraunhofer ISE Indoor 1-axis, +90° to -90°, Manual Pasan flasher with broadband Xe arc lamp (class AAA) 

PTB Indoor 2-axis, +90° to -90°, Automated Tuneable laser system with broadband bias lamps 

SUPSI Indoor 1-axis, +90° to -90°, Automated Pasan flasher with broadband Xe arc lamp (class AAA) 

 



incident angles. 

IEC 61853-2 specifies that three measurements shall 

be taken at each angle. Six DUTs and 38 angles per 

sample would mean that each laboratory needs perform 
684 measurements. In most cases, this was not possible 

due to time constraints and therefore only one 

measurement per angle, per sample was provided by most 

laboratories. 
 

2.3 Uncertainty and Analysis of Results 

Six of the eight labs provided the expanded 

uncertainty (k = 2) for the value of relative transmissivity 
τ(ɵ) at each measured angle ɵ. Two of these labs 

provided DUT specific uncertainty while the other four 

provided an uncertainty estimate that covered all samples 

in this round-robin.  
The uncertainty of each lab’s measurement is critical 

for establishing comparability through the En number 

calculation (1). The two labs that were not able to provide 

measurement uncertainty were assumed to have the worst 
case uncertainty. That is for every angle measured, the 

highest uncertainty submitted by any lab is used as the 

measurement uncertainty for the labs without uncertainty. 

 For every sample and every angle, an En number is 
calculated per (1). 

 

En= 
xi- Xref,i

√UCi
2
+ UCref,i

 2
                        (1) 

 

Wherein xi is the individual laboratory’s measured 
relative transmissivity τ(ɵ) and UCi is the expanded (k = 

2) uncertainty of the lab’s measurement of τ(ɵ). The 

reference value Xref,i is the weighted mean of all partner´s 

measured τ(ɵ) values for a given sample at a given angle. 
Here the measurements are weighted by the uncertainty 

provided by each partner. Weighting the results in this 

manner has the consequence of shifting the Xref value 

towards the measured values (xi) of the laboratories with 
lower uncertainty. For every sample and every angle, the 

Xref,i value is calculated using equation (2). 
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Wherein σi is the k = 1 uncertainty of the lab’s 

measurement. The value σi is squared in (2) to arrive at 

the variance, which is additive by nature, whereas the 
standard deviation is not. Finally, UCref,i is the expanded 

(k = 2) combined uncertainty of Xref,i and is calculated per 

(3). Calculating UCref in this way yields a value that is 

always lower than any of the participating labs’ declared 
uncertainties. 

 

 𝑈𝐶𝑟𝑒𝑓,𝑖 =  
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2
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                     (3) 

 

The relative transmission measurements from each 

laboratory are said to be coherently within their declared 
uncertainty when -1 ≤ En ≤ 1. In other words, the 

condition -1 ≤ En ≤ 1 is met when the difference between 

a lab’s measurement (xi) and the reference value (Xref,i) is 

less than or equal to the root sum of squares (RSS) of the 
lab’s declared uncertainty (UCi) and the reference 

uncertainty (UCref,i). The sign of En provides a convenient 

way of discerning whether a lab’s measurement is high 

(En = +) or low (En = -) relative to the weighted group 

mean. 
 

3 RESULTS 

 

The expanded uncertainty provided from each partner 
laboratory is shown as a function of AOI in Figure 1. 

Since there were three unique DUTs in the campaign, 

some labs accordingly reported an expanded uncertainty 

for each of the three DUTs. The uncertainty from 
partners who did provide DUT specific uncertainty 

(CREST and PTB) is represented by range bars and a dot 

symbol. The range bars show the maximum and 

minimum uncertainty reported by the laboratory while 
the dot in the middle represents their median uncertainty. 

The same convention is used to represent UCref. Note 

how UCref is less than the uncertainty of all laboratories at 

each angle. The uncertainty provided by partners with 
non-DUT specific uncertainty is represented with ‘x’ 

symbols. Figure 1 shows a trend of increasing uncertainty 

with increasing AOI, wherein a range of 0.1% to 3% at 

normal incidence and a range of 2.5% to 9.3% at 85° 
AOI is observed. The specific reasons for this increasing 

trend will be unique to a given measurement system (e.g. 

increasing non-uniformity or uncertainty of the measured 

angle ɵ). In the DTU measurement system, for example, 
the increase of uncertainty at large angles is primarily due 

to an increased contribution of uncertainty from the 

measured angle ɵ. 

 

 
Figure 1: Expanded uncertainty from six laboratories as 

a function of AOI. The expanded uncertainty of the 

reference (UCref) is also shown. Labs providing a single 

uncertainty value at each angle are noted with an ‘x’ 
whereas labs with uncertainty specific to each DUT are 

noted with dots and range bars. 

 

The measurements on sample Black-Si A performed 
by the eight partner laboratories are shown in Figure 2. 

We show the high-level results from this sample only 

because the measurement differences between the labs 

showed a consistent trend and because sample Black-Si 
A showed the worst case range (max-min) among the 

eight labs. Figure 2 shows an increasing measurement 

range between the labs with an increasing AOI. This 

result follows the same trend of increasing uncertainty 

with increasing AOI purported by the partner 

laboratories. In the positive direction, the measurement 

range is less than 0.1 (10%) up to a +60° AOI, while in 

the negative direction the range is less than 0.1 up to a -
70° AOI. We attribute the difference between 

measurements at positive and negative angles to an 



artifact in some participant’s results, not because of an 

inherent non-symmetry in the DUT itself. The maximum 

disagreement of 0.69 (69%) and 0.75 (75%) is observed 

at +85° and -85° AOI, respectively. This large 
disagreement is mostly driven by the outdoor 

measurement performed by CENER. If this measurement 

is removed, the range at 85° AOI is decreased to 0.23 

(23%) in the positive direction and 0.36 (36%) in the 
negative direction.  

 

 
Figure 2: Overlay of transmission as a function of AOI ɵ 

as measured by eight laboratories on sample Black-Si A. 

The range of all measurements is also shown. 
 

In Figure 3 we show the difference between each 

lab’s angular transmission measurement τ(ɵ) and the 

reference value Xref. Recall that there are three DUTs, and 
thus three Xref values at each AOI. The error bars drawn 

around each data point represent the maximum and 

minimum difference to the reference value; the center of 

the data point between the bars represents the median 
difference. Note that the deltas of -33% to -45% at ±85° 

reported by CENER have been removed from the plot in 

order to create a finer view of the y-axis.  

Figure 3 shows that the agreement between all labs 
relative to the weighted mean is better than ±2% in the 

limited range of AOIs from -30° to 25°. However, it is 

only the measurements from CIEMAT and SUPSI that 

show dispersion from the group at low angles. If 
CIEMAT and SUPSI’s data are excluded, then the 

agreement between the six remaining labs is better than 

±2% for AOIs -50° to 50°. Beyond -50° to 50°, CENER’s 

measurements become increasingly lower relative to the 
other labs’. If CENER’s measurements are also excluded, 

five of the eight labs have an agreement of better than 

±2% from the weighted mean on all samples between -

75° to 70°. At ±80° these same five labs show worst case 
agreement of -3% to 5% relative to the weighted mean 

(Black-Si A), and a best case agreement of -1% to 0.5% 

relative to the weighted mean (Mono-Si). And finally, at 

±85° the five labs show worst case agreement of 0% to 
18% relative to the weighted mean (Black-Si B) and a 

best case agreement of 0.5% to 8.5% (Mono-Si). The 

worse agreement on the Black-Si as compared to Mono-

Si sample could be due to the difference in surface 
structures or differences in low-light behavior.  

 

 
Figure 3: Plot showing the difference between each lab’s 

measurement and the reference value Xref. The error bars 

show each lab’s max and min difference to Xref. The red 
dashed reference lines are drawn at ±2%. 

 

In Figure 4 we present the results from the En number 

calculation as a function of AOI for the Black-Si A 
sample. The profile observed in Figure 4 is similar to that 

in Figure 3 because the data in Figure 3 are the numerator 

used in the En calculation. Figure 4 shows 39 (of 280 

total) measurements where the results are not comparable 
within the stated or assumed uncertainties. In other 

words, 14% of the time En is greater than 1 or less than -

1, wherein all instances occur at AOIs ≥ |±40|°. PTB and 

CREST are the only two labs whose measurements result 
is -1 ≤ En ≤ 1 for all AOIs. Thus, we can say that their 

measurements agree to the weighted mean within the 

stated uncertainties for all measurement angles.  

The CIEMAT data show 10 instances of non-
comparability. Therefore the worst case uncertainty 

assumed for the CIEMAT measurements is clearly too 

conservative to make them comparable to the rest of the 

partners. Interestingly, CIEMAT shows several instances 
of non-comparability in the positive angular direction, 

but none in the negative direction. This is due to the non-

symmetrical measurements they obtained (Figure 2). The 

reason behind the non-symmetry is still uncertain, but we 
believe it is likely due to an offset in the vertical axis of 

rotation from the middle of the PV cell. In addition, it is 

also possible that the optics unique to the CIEMAT 

measurement system result in the partial polarization of 
light from the halogen lamp, which in return would alter 

the reflection and transmission properties.  

 

 
Figure 4: En number as a function of AOI ɵ for the 
measurements from eight laboratories.  

 

The CENER data show 16 instances of measurements 

that deviate from the weighted mean beyond their 
reported uncertainty level. The CENER measurements 

are consistently lower than the measurements from the 

other seven partners and this difference increases at 



higher AOIs. The CENER measurements were the only 

measurements in this round-robin performed outdoors. 

However, we do not conclude that the low results are 

attributable to the outdoor approach itself. To better 
understand the differences that can occur indoors versus 

outdoors, we propose to extend the measurement 

campaign to additional laboratories performing the AOI 

test outdoors. 
The SUPSI data show 8 instances where their 

measurements do not agree within the stated uncertainty 

and all 8 instances occur at AOIs ≥ |±70|°. Although the 

SUPSI measurements are consistently higher than most 
of the labs at every AOI (Figure 2 and Figure 3), they are 

also the lab with the most conservative uncertainty. 

However, the stated uncertainty of 4.6% to 4.7% at AOI 

≥ 70° is not conservative enough for comparability. The 
reason(s) for SUPSI’s higher than average angular 

transmission measurements are still under investigation. 

At the time of writing the high measurements are 

believed to be due to unwanted reflections within the test 
bed. These reflections are more pronounced in the 

negative direction than in the positive direction. The 

SUPSI data show that establishing comparability is not 

dependent on the light source used. CREST, ECN>TNO, 
ISE and SUPSI all used Xe flash lamps to measure the 

samples and yet SUPSI shows significant deviations from 

the other three labs.   

DTU, ECN>TNO and ISE all show generally good 
agreement to the weighted mean; each lab shows one or 

two instances where their measurements are not 

comparable within the stated or assumed uncertainties. 

For DTU this occurs at AOI of 80° while for ECN>TNO 
and ISE it occurs at the extreme angles of ±85°. In 

actuality the measurements from ECN>TNO are closer to 

the weighted mean than ISE’s at these high AOIs, since 

the uncertainties provided by ECN>TNO are more 
conservative than the maximum uncertainty assigned to 

the ISE measurements.  

To understand the uncertainty level necessary for 

CIEMAT and ISE to be comparable to the weighted 
mean, we solve (1) for UCi while leaving En = 1 and Xref,i 

and UCref,i constant based on results from the other six 

labs. The results are shown in Figure 5 for the Black-Si A 

sample. The maximum uncertainty at each AOI reported 
by any of the other six labs is also shown. Since the 

expanded uncertainty limit for ISE is less than 1% out to 

±65°, we can conclude that their measurements agree 

well to the weighted mean within that range. However, an 
uncertainty between 11.7% and 17.7% at the highest 

angles of ±85° would be required for comparability.  

 

 
Figure 5: Minimum uncertainties required in order for 

CIEMAT’s and ISE’s measurements to be comparable to 
the weighted mean of the other six labs.  

As mentioned, the measurement differences between 

labs showed the same trend across all three samples. 

Nevertheless we wish to give a full perspective of how 

the En number varied across samples and angles. In 
Figure 6, we show the number of labs that had an En 

number outside the limit of comparability. Figure 6 

shows that at the extreme AOIs half or more of the labs 

have deviations that are not fully covered by their 
uncertainty budgets. This result highlights the difficulty 

of performing accurate measurements at high AOIs. 

Figure 6 includes all eight laboratories and assumes the 

worst case uncertainty for the ISE and CIEMAT data.  
 

 
Figure 6: Plot showing the number of labs that do not 
comply to the condition -1 ≤ En ≤ 1 as a function of AOI.  

IEC 61853-2 states that the rotational symmetry of 

the test system shall be verified at -80° and 80° AOI. It 

further states that the deviation in the relative 
transmissivity at these two angles shall not deviate by 

more than 2%. We performed this check for all eight 

laboratories and the results for the Black-Si A sample are 

shown in Figure 7. The limits of ±2% are indicated by the 
dashed red reference lines. It can be seen in Figure 7 that 

the labs who were the most comparable always meet the 

IEC requirement for symmetry. On the contrary, the labs 

with the lowest comparability and largest deviations from 
the weighted mean, showed symmetry that did not 

comply with the standard. This result suggests that it is a 

good practice to verify the symmetrical performance of a 

test system for measurement of the angular dependency 
of PV devices.  

 

 
Figure 7: Variability plot showing the symmetry of the 

relative transmissivity measurements at ±80°. Three data 

points are shown for each lab, one for each sample. 

 

 

 
 



4 SUMMARY 

 

The results from an international round-robin 

between eight laboratories performing angular dependent 
measurements have been presented. Five of the eight labs 

showed an agreement better than ±2% between AOIs 

from -75° to 70°. At AOIs of ±80° and ±85°, the same 

five labs showed a worst case deviation to the weighted 
mean of -3% to 5% and 0% to 18%, respectively. These 

worst cases were observed on the ‘Black-Si A’ and 

‘Black-Si B’ samples. The results showed that 

measurements at the highest incidence angle of ±85° are 
problematic, where a high to low range of up to 75% was 

observed among the eight labs.  

The results provided by CREST and PTB agreed to 

the weighted average within their stated uncertainties for 
all angles. Similarly, the results from DTU and 

ECN>TNO agreed to the weighted average within their 

uncertainties, for all angles except 85°. At high angles of 

incidence (≥ 70°) the measurements from three to five 
labs were found not comparable within their stated or 

assumed uncertainties. The more frequent non-

comparability observed at high angles of incidence 

suggests that labs may need to reconsider a more 
conservative uncertainty budget at angles ≥ 70°.  

In a future work we will investigate the influence of 

the measurement deviations observed in this round-robin 

on modelled energy production. Furthermore, we plan to 
extend the round-robin to obtain more data from 

laboratories performing the AOI test outdoors.  
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