6 research outputs found

    Structural basis for dimer formation of human condensin structural maintenance of chromosome proteins and its implications for single-stranded DNA recognition

    Get PDF
    Eukaryotic structural maintenance of chromosome proteins (SMC) are major components of cohesin and condensins that regulate chromosome structure and dynamics during cell cycle. We here determine the crystal structure of human condensin SMC hinge heterodimer with ∼30 residues of coiled coils. The structure, in conjunction with the hydrogen exchange mass spectrometry analyses, revealed the structural basis for the specific heterodimer formation of eukaryotic SMC and that the coiled coils from two different hinges protrude in the same direction, providing a unique binding surface conducive for binding to single-stranded DNA. The characteristic hydrogen exchange profiles of peptides constituted regions especially across the hinge-hinge dimerization interface, further suggesting the structural alterations upon single-stranded DNA binding and the presence of a half-opened state of hinge heterodimer. This structural change potentially relates to the DNA loading mechanism of SMC, in which the hinge domain functions as an entrance gate as previously proposed for cohesin. Our results, however, indicated that this is not the case for condensins based on the fact that the coiled coils are still interacting with each other, even when DNA binding induces structural changes in the hinge region, suggesting the functional differences of SMC hinge domain between condensins and cohesin in DNA recognition.Susumu Uchiyama, Kazuki Kawahara, Yuki Hosokawa, Shunsuke Fukakusa, Hiroya Oki, Shota Nakamura, Yukiko Kojima, Masanori Noda, Rie Takino, Yuya Miyahara, Takahiro Maruno, Yuji Kobayashi, Tadayasu Ohkubo, Kiichi Fukui. Structural Basis for Dimer Formation of Human Condensin Structural Maintenance of Chromosome Proteins and Its Implications for Single-stranded DNA Recognition. Journal of Biological Chemistry, Volume 290, Issue 49, 2015, Pages 29461-29477. https://doi.org/10.1074/jbc.M115.670794

    Polymer-Like Polyphenols of Black Tea and Their Lipase and Amylase Inhibitory Activities

    Get PDF
    Lipase and amylase inhibitory activities of black tea were examined. After solvent partitioning of a black tea extract with the ethyl acetate and n-butanol, the two soluble fractions showed comparable inhibitory activities. Activity in the ethyl acetate fraction was mainly attributable to polyphenols with low-molecular weights, such as theaflavin gallates. On the other hand, the active substance in the n-butanol layer was ascertained to be a polymer-like substance. 1H- and 13C-NMR spectra showed signals arising from the flavan A-ring and galloyl groups, although signals due to flavan B-rings were not detected, suggesting that the polymer-like substances were generated by oxidative condensation of flavan B-rings, a result which was previously deduced from our results of in vitro catechin oxidation experiments. Enzymatic oxidation of epicatechin 3-O-gallate produced a similar polymer-like substance and suggested that condensation between a B-ring and galloyl groups was involved in the polymerization reaction
    corecore