166 research outputs found
Association of early life factors and brain tumour risk in a cohort study
Using population-based linked birth and cancer registry data, we investigated whether the risk of brain tumour in childhood (n=155) was associated with perinatal risk factors. This population-based cohort showed that being born into a larger family or to a mother with a history of miscarriage may increase childhood brain tumour risk
Telomere maintenance and dysfunction predict recurrence in paediatric ependymoma
We have recently described the enzymatic subunit of telomerase (hTERT) as an important prognostic marker for paediatric ependymoma. Because of the lack of good, representative pre-clinical models for ependymoma, we took advantage of our large cohort of ependymoma patients, some with multiple recurrences, to investigate telomere biology in these tumours. Our cohort consisted of 133 ependymomas from 83 paediatric patients and included 31 patients with recurrences. Clinical outcome was measured as overall survival, progression-free survival and response to therapy. In all 133 tumours, hTERT expression correlated with proliferative markers, including MIB-1 index (P<0.0001) and mitotic index (P=0.005), as well as overall tumour grade (P=0.001), but not with other markers of anaplasia. There was no correlation between telomere length and hTERT expression or survival. Surprisingly, prior radiation or chemotherapy neither induced sustained DNA damage nor affected telomere maintenance in recurrent tumours. There was an inverse correlation between hTERT expression and telomere dysfunction as measured by γH2AX expression (P=0.016). Combining γH2AX and hTERT expressions could segregate tumours into three different survival groups (log rank, P<0.0001) such that those patients whose tumours expressed hTERT and showed no evidence of DNA damage had the worst outcome. This study emphasises the importance of telomere biology as a prognostic tool and telomerase inhibition as a therapeutic target for paediatric ependymoma. Furthermore, we have demonstrated that analysing tumours as they progress in vivo is a viable approach to studying tumour biology in humans
Selective cancer-germline gene expression in pediatric brain tumors
Cancer-germline genes (CGGs) code for immunogenic antigens that are present in various human tumors and can be targeted by immunotherapy. Their expression has been studied in a wide range of human tumors in adults. We measured the expression of 12 CGGs in pediatric brain tumors, to identify targets for therapeutic cancer vaccines. Real Time PCR was used to quantify the expression of genes MAGE-A1, MAGE-A2, MAGE-A3, MAGE-A4, MAGE-A6, MAGE-A10, MAGE-A12, MAGE-C2, NY-ESO-1 and GAGE-1,2,8 in 50 pediatric brain tumors of different histological subtypes. Protein expression was examined with immunohistochemistry. Fifty-five percent of the medulloblastomas (n = 11), 86% of the ependymomas (n = 7), 40% of the choroid plexus tumors (n = 5) and 67% of astrocytic tumors (n = 27) expressed one or more CGGs. Immunohistochemical analysis confirmed qPCR results. With exception of a minority of tumors, the overall level of CGG expression in pediatric brain tumors was low. We observed a high expression of at least one CGG in 32% of the samples. CGG-encoded antigens are therefore suitable targets in a very selected group of pediatric patients with a brain tumor. Interestingly, glioblastomas from adult patients expressed CGGs more often and at significantly higher levels compared to pediatric glioblastomas. This observation is in line with the notion that pediatric and adult glioblastomas develop along different genetic pathways
Molecular and phenotypic characterisation of paediatric glioma cell lines as models for preclinical drug development.
Although paediatric high grade gliomas resemble their adult counterparts in many ways, there appear to be distinct clinical and biological differences. One important factor hampering the development of new targeted therapies is the relative lack of cell lines derived from childhood glioma patients, as it is unclear whether the well-established adult lines commonly used are representative of the underlying molecular genetics of childhood tumours. We have carried out a detailed molecular and phenotypic characterisation of a series of paediatric high grade glioma cell lines in comparison to routinely used adult lines
Survivin, Survivin-2B, and Survivin-deItaEx3 expression in medulloblastoma: biologic markers of tumour morphology and clinical outcome
Survivin is an apoptotic inhibitor that is expressed at high levels in a variety of malignancies. Survivin has four known alternative splice forms (Survivin, Survivin-2B, Survivin-deltaEx3, and Survivin-3B), and the recent literature suggests that these splice variants have unique functions and subcellular localisation patterns. We evaluated 19 fresh-frozen paediatric medulloblastomas for the expression of three Survivin isoforms by quantitative PCR. Survivin was most highly expressed when compared with normal cerebellar tissue. We also investigated Survivin protein expression in 40 paraffin-embedded paediatric medulloblastoma tumours by immunohistochemistry. We found a statistically significant association between the percentage of Survivin-positive cells and histologic subtype, with the large-cell-anaplastic variant expressing Survivin at higher levels than the classic subtype. We also found a statistically significant relationship between the percent of Survivin-positive cells in the tumours and clinical outcome, with higher levels of Survivin correlating with a worse prognosis. In summary, our study demonstrates a role for Survivin as a marker of tumour morphology and clinical outcome in medulloblastoma. Survivin may be a promising future prognostic tool and potential biologic target in this malignancy
B Cell: T Cell Interactions Occur within Hepatic Granulomas during Experimental Visceral Leishmaniasis
Hepatic resistance to Leishmania donovani infection in mice is associated with the development of granulomas, in which a variety of lymphoid and non-lymphoid populations accumulate. Although previous studies have identified B cells in hepatic granulomas and functional studies in B cell-deficient mice have suggested a role for B cells in the control of experimental visceral leishmaniasis, little is known about the behaviour of B cells in the granuloma microenvironment. Here, we first compared the hepatic B cell population in infected mice, where ≈60% of B cells are located within granulomas, with that of naïve mice. In infected mice, there was a small increase in mIgMlomIgD+ mature B2 cells, but no enrichment of B cells with regulatory phenotype or function compared to the naïve hepatic B cell population, as assessed by CD1d and CD5 expression and by IL-10 production. Using 2-photon microscopy to quantify the entire intra-granuloma B cell population, in conjunction with the adoptive transfer of polyclonal and HEL-specific BCR-transgenic B cells isolated from L. donovani-infected mice, we demonstrated that B cells accumulate in granulomas over time in an antigen-independent manner. Intra-vital dynamic imaging was used to demonstrate that within the polyclonal B cell population obtained from L. donovani-infected mice, the frequency of B cells that made multiple long contacts with endogenous T cells was greater than that observed using HEL-specific B cells obtained from the same inflammatory environment. These data indicate, therefore, that a subset of this polyclonal B cell population is capable of making cognate interactions with T cells within this unique environment, and provide the first insights into the dynamics of B cells within an inflammatory site
Duplication of 7q34 is specific to juvenile pilocytic astrocytomas and a hallmark of cerebellar and optic pathway tumours
BACKGROUND: Juvenile pilocytic astrocytomas (JPA), a subgroup of low-grade astrocytomas (LGA), are common, heterogeneous and poorly understood subset of brain tumours in children. Chromosomal 7q34 duplication leading to fusion genes formed between KIAA1549 and BRAF and subsequent constitutive activation of BRAF was recently identified in a proportion of LGA, and may be involved in their pathogenesis. Our aim was to investigate additional chromosomal unbalances in LGA and whether incidence of 7q34 duplication is associated with tumour type or location. METHODS AND RESULTS: Using Illumina-Human-Hap300-Duo and 610-Quad high-resolution-SNP-based arrays and quantitative PCR on genes of interest, we investigated 84 paediatric LGA. We demonstrate that 7q34 duplication is specific to sporadic JPA (35 of 53-66%) and does not occur in other LGA subtypes (0 of 27) or NFI-associated-JPA (0 of 4). We also establish that it is site specific as it occurs in the majority of cerebellar JPA (24 of 30-80%) followed by brainstem, hypothalamic/optic pathway JPA (10 of 16-62.5%) and is rare in hemispheric JPA (1 of 7-14%). The MAP-kinase pathway, assessed through ERK phosphorylation, was active in all tumours regardless of 7q34 duplication. Gain of function studies performed on hTERT-immortalised astrocytes show that overexpression of wild-type BRAF does not increase cell proliferation or baseline MAPK signalling even if it sensitises cells to EGFR stimulation. CONCLUSIONS AND INTERPRETATION: Our results suggest that variants of JPA might arise from a unique site-restricted progenitor cell where 7q34 duplication, a hallmark of this tumour-type in association to MAPK-kinase pathway activation, potentially plays a site-specific role in their pathogenesis. Importantly, gain of function abnormalities in components of MAP-Kinase signalling are potentially present in all JPA making this tumour amenable to therapeutic targeting of this pathway. British Journal of Cancer (2009) 101, 722-733. doi: 10.1038/sj.bjc.6605179 www.bjcancer.com Published online 14 July 2009 (C) 2009 Cancer Research U
Sidestream cigarette smoke effects on cardiovascular responses in conscious rats: involvement of oxidative stress in the fourth cerebral ventricle
Background: Cigarette exposure increases brain oxidative stress. The literature showed that increased brain oxidative stress affects cardiovascular regulation. However, no previous study investigated the involvement of brain oxidative stress in animals exposed to cigarette and its relationship with cardiovascular regulation. We aimed to evaluate the effects of central catalase inhibition on baroreflex and cardiovascular responses in rats exposed to sidestream cigarette smoke (SSCS). Methods: We evaluated males Wistar rats (320-370 g), which were implanted with a stainless steel guide cannula into the fourth cerebral ventricle (4th V). Femoral artery and vein were cannulated for mean arterial pressure (MAP) and heart rate (HR) measurement and drug infusion, respectively. Rats were exposed to SSCS during three weeks, 180 minutes, 5 days/week (CO: 100-300 ppm). Baroreflex was tested with a pressor dose of phenylephrine (PHE, 8 mu g/kg, bolus) to induce bradycardic reflex and a depressor dose of sodium nitroprusside (SNP, 50 mu g/kg, bolus) to induce tachycardic reflex. Cardiovascular responses were evaluated before, 5, 15, 30 and 60 minutes after 3-amino-1,2,4-triazole (ATZ, catalase inhibitor, 0.001 g/100 mu L) injection into the 4th V. Results: Central catalase inhibition increased basal HR in the control group during the first 5 minutes. SSCS exposure increased basal HR and attenuated bradycardic peak during the first 15 minutes. Conclusion: We suggest that SSCS exposure affects cardiovascular regulation through its influence on catalase activity.Foundation of Support to Research of Sao Paulo State (Fundacao de Amparo a Pesquisa do Estado de Sao Paulo-FAPESP [07/59127-9
- …