1,277 research outputs found

    Seasonal dependence of peroxy radical concentrations at a Northern hemisphere marine boundary layer site during summer and winter: evidence for radical activity in winter

    Get PDF
    Peroxy radicals (HO2+Σ RO2) were measured at the Weybourne Atmospheric Observatory (52° N, 1° E), Norfolk using a PEroxy Radical Chemical Amplifier (PERCA) during the winter and summer of 2002. The peroxy radical diurnal cycles showed a marked difference between the winter and summer campaigns with maximum concentrations of 12 pptv at midday in the summer and maximum concentrations as high as 30 pptv (10 min averages) in winter at night. The corresponding nighttime peroxy radical concentrations were not as high in summer (3 pptv). The peroxy radical concentration shows a distinct anti-correlation with increasing NOx during the daylight hours. At night, peroxy radicals increase with increasing NOx indicative of the role of NO3 chemistry. The average diurnal cycles for net ozone production, N(O3) show a large variability in ozone production, P(O3), and a large ozone loss, L(O3) in summer relative to winter. For a daylight average, net ozone production in summer was higher than winter (1.51±0.5 ppbv h−1 and 1.11±0.47 ppbv h−1, respectively). The variability in NO concentration has a much larger effect on N(O3) than the peroxy radical concentrations. Photostationary state (PSS) calculations show an NO2 lifetime of 5 min in summer and 21 minutes in the winter, implying that steady-state NO-NO2 ratios are not always attained during the winter months. The results show an active peroxy radical chemistry at night and that significant oxidant levels are sustained in winter. The net effect of this with respect to production of ozone in winter is unclear owing to the breakdown in the photostationary state

    Age structure, dispersion and diet of a population of stoats (Mustela erminea) in southern Fiordland during the decline phase of the beechmast cycle

    Get PDF
    The dispersion, age structure and diet of stoats (Mustela erminea) in beech forest in the Borland and Grebe Valleys, Fiordland National Park, were examined during December and January 2000/01, 20 months after a heavy seed-fall in 1999. Thirty trap stations were set along a 38-km transect through almost continuous beech forest, at least 1 km apart. Mice were very scarce (nights, C/100TN) along two standard index lines placed at either end of the transect, compared with November 1999 (>60/100TN), but mice were detected (from footprints in stoat tunnels) along an 8 km central section of the transect (stations 14-22). Live trapping with one trap per station (total 317.5 trap nights) in December 2000 caught 2 female and 23 male stoats, of which 10 (including both females) were radio collared. The minimum range lengths of the two females along the transect represented by the trap line were 2.2 and 6.0 km; those of eight radio-tracked males averaged 2.9 ± 1.7 km. Stations 14-22 tended to be visited more often, by more marked individual stoats, than the other 21 stations. Fenn trapping at the same 30 sites, but with multiple traps per station (1333.5 trap nights), in late January 2001 collected carcasses of 35 males and 28 females (including 12 of the marked live-trapped ones). Another two marked males were recovered dead. The stoat population showed no sign of chronic nutritional stress (average fat reserve index = 2.8 on a scale of 1-4 where 4 = highest fat content); and only one of 63 guts analysed was empty. Nevertheless, all 76 stoats handled were adults with 1-3 cementum annuli in their teeth, showing that reproduction had failed that season. Prey categories recorded in descending frequency of occurrence were birds, carabid beetle (ground beetle), weta, possum, rat, and mouse. The frequencies of occurrence of mice and birds in the diet of these stoats (10% and 48%, respectively) were quite different from those in stoats collected in Pig Creek, a tributary of the Borland River (87%, 5%), 12 months previously when mice were still abundant. Five of the six stoat guts containing mice were collected within 1 km of stations 14-22

    D-brane categories

    Full text link
    This is an exposition of recent progress in the categorical approach to D-brane physics. I discuss the physical underpinnings of the appearance of homotopy categories and triangulated categories of D-branes from a string field theoretic perspective, and with a focus on applications to homological mirror symmetry.Comment: 37 pages, IJMPA styl

    The CRI v2.2 reduced degradation scheme for isoprene

    Get PDF
    The reduced representation of isoprene degradation in the Common Representative Intermediates (CRI) mechanism has been systematically updated, using the Master Chemical Mechanism (MCM v3.3.1) as a reference benchmark, with the updated mechanism being released as CRI v2.2. The complete isoprene degradation mechanism in CRI v2.2 consists of 186 reactions of 56 closed shell and free radical species, this being an order of magnitude reduction in size compared with MCM v3.3.1. The chemistry initiated by reaction with OH radicals, NO3 radicals and ozone (O3) is treated. An overview of the updates is provided, within the context of reported kinetic and mechanistic information. The revisions mainly relate to the OH-initiated chemistry, which tends to dominate under atmospheric conditions, although these include updates to the chemistry of products that are also generated from the O3- and NO3-initiated oxidation. The revisions have impacts in a number of key areas, including recycling of HOx and NOx. The performance of the CRI v2.2 isoprene mechanism has been compared with those of the preceding version (CRI v2.1) and the reference MCM v3.3.1 over a range of relevant conditions, using a box model of the tropical forested boundary layer. In addition, tests are carried out to ensure that the performance of MCM v3.3.1 remains robust to more recently reported information. CRI v2.2 has also been implemented into the STOCHEM chemistry-transport model, with a customized close-variant of CRI v2.2 implemented into the EMEP MSC-W chemistry-transport model. The results of these studies are presented and used to illustrate the global-scale impacts of the mechanistic updates on HOx radical concentrations

    Seasonal dependence of peroxy radical concentrations at a northern hemisphere marine boundary layer site during summer and winter: evidence for photochemical activity in winter

    No full text
    International audiencePeroxy radicals (HO2+?RO2) were measured at the Weybourne Atmospheric Observatory (52° N, 1° E), Norfolk using a PEroxy Radical Chemical Amplifier (PERCA) during the winter and summer of 2002. The peroxy radical diurnal cycles showed a marked difference between the winter and summer campaigns with maximum concentrations of 12 pptv at midday in the summer and maximum concentrations as high as 30 pptv (10 min averages) in winter at night. The corresponding nighttime peroxy radical concentrations were not as high in summer (3 pptv). The peroxy radical concentration shows a distinct anti-correlation with increasing NOx during the daylight hours. At night, peroxy radicals increase with increasing NOx indicative of the role of NO3 chemistry. The average diurnal cycles for net ozone production, N(O3) show a large variability in ozone production, P(O3), and a large ozone loss, L(O3) in summer relative to winter. For a daylight average, net ozone production in summer than winter (1.51±0.5 ppbv h?1 and 1.11±0.47 ppbv h?1 respectively) but summer shows more variability of (meteorological) conditions than winter. The variability in NO concentration has a much larger effect on N(O3) than the peroxy radical concentrations. Photostationary state (PSS) calculations show an NO2 lifetime of 5 min in summer and 21 min in the winter, implying that steady-state NO-NO2 ratios are not always attained during the winter months. The results show an active peroxy radical chemistry at night and the ability of winter to make oxidant. The net effect of this with respect to production of ozone in winter is unclear owing to the breakdown in the photostationary state

    A self-consistent, multivariate method for the determination of gas-phase rate coefficients, applied to reactions of atmospheric VOCs and the hydroxyl radical

    Get PDF
    Gas-phase rate coefficients are fundamental to understanding atmospheric chemistry, yet experimental data are not available for the oxidation reactions of many of the thousands of volatile organic compounds (VOCs) observed in the troposphere. Here, a new experimental method is reported for the simultaneous study of reactions between multiple different VOCs and OH, the most important daytime atmospheric radical oxidant. This technique is based upon established relative rate concepts but has the advantage of a much higher throughput of target VOCs. By evaluating multiple VOCs in each experiment, and through measurement of the depletion in each VOC after reaction with OH, the OH + VOC reaction rate coefficients can be derived. Results from experiments conducted under controlled laboratory conditions were in good agreement with the available literature for the reaction of 19 VOCs, prepared in synthetic gas mixtures, with OH. This approach was used to determine a rate coefficient for the reaction of OH with 2,3-dimethylpent-1-ene for the first time; k =  5.7 (±0.3)  ×  10⁻¹¹ cm³ molecule⁻¹ s⁻¹. In addition, a further seven VOCs had only two, or fewer, individual OH rate coefficient measurements available in the literature. The results from this work were in good agreement with those measurements. A similar dataset, at an elevated temperature of 323 (±10) K, was used to determine new OH rate coefficients for 12 aromatic, 5 alkane, 5 alkene and 3 monoterpene VOC + OH reactions. In OH relative reactivity experiments that used ambient air at the University of York, a large number of different VOCs were observed, of which 23 were positively identified. Due to difficulties with detection limits and fully resolving peaks, only 19 OH rate coefficients were derived from these ambient air samples, including 10 reactions for which data were previously unavailable at the elevated reaction temperature of T =  323 (±10) K

    Chlorhexidine gluconate or polyhexamethylene biguanide disc dressing to reduce the incidence of central-line-associated bloodstream infection: a feasibility randomized controlled trial (the CLABSI trial)

    Get PDF
    Background A number of antimicrobial-impregnated discs to prevent central-line-associated bloodstream infection (CLABSI) are marketed but it is unclear which disc is most effective. Aim To investigate the feasibility and safety of comparing two antimicrobial-impregnated discs to prevent CLABSI. Methods A single-centre, parallel group, randomized controlled trial was conducted in a 929-bed tertiary referral hospital. Hospital inpatients requiring a peripherally inserted central catheter were randomized to chlorhexidine gluconate (CHG) or polyhexamethylene biguanide (PHMB) disc dressing group. Dressings were replaced every seven days, or earlier, if clinically required. Participants were followed until device removal or hospital discharge. Feasibility outcomes included: proportion of potentially eligible participants who were enrolled; proportion of protocol violations; and proportion of patients lost to follow-up. Clinical outcomes were: CLABSI incidence, diagnosed by a blinded infection control practitioner; all-cause bloodstream infection (BSI); and product-related adverse events. Findings Of 143 patients screened, 101 (71%) were eligible. Five (3.5%) declined participation. There was one post-randomization exclusion. Two (2%) protocol violations occurred in the CHG group. No patients were lost to follow-up. Three (3%) BSIs occurred; two (2%) were confirmed CLABSIs (one in each group) and one a mucosal barrier injury-related BSI. A total of 1217 device-days were studied, resulting in 1.64 CLABSIs per 1000 catheter-days. One (1%) disc-related adverse event occurred in the CHG group. Conclusion Disc dressings containing PHMB are safe to use for infection prevention at catheter insertion sites. An adequately powered trial to compare PHMB and CHG discs is feasible

    Support varieties for selfinjective algebras

    Full text link
    Support varieties for any finite dimensional algebra over a field were introduced by Snashall-Solberg using graded subalgebras of the Hochschild cohomology. We mainly study these varieties for selfinjective algebras under appropriate finite generation hypotheses. Then many of the standard results from the theory of support varieties for finite groups generalize to this situation. In particular, the complexity of the module equals the dimension of its corresponding variety, all closed homogeneous varieties occur as the variety of some module, the variety of an indecomposable module is connected, periodic modules are lines and for symmetric algebras a generalization of Webb's theorem is true

    Topological Orthoalgebras

    Full text link
    We define topological orthoalgebras (TOAs) and study their properties. While every topological orthomodular lattice is a TOA, the lattice of projections of a Hilbert space is an example of a lattice-ordered TOA that is not a toplogical lattice. On the other hand, we show that every compact Boolean TOA is a topological Boolean algebra. We also show that a compact TOA in which 0 is an isolated point is atomic and of finite height. We identify and study a particularly tractable class of TOAs, which we call {\em stably ordered}: those in which the upper-set generated by an open set is open. This includes all topological OMLs, and also the projection lattices of Hilbert spaces. Finally, we obtain a topological version of the Foulis-Randall representation theory for stably ordered TOAsComment: 16 pp, LaTex. Minor changes and corrections in sections 1; more substantial corrections in section

    Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) experiment: design, execution and science overview

    Get PDF
    We describe the design and execution of the BORTAS (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites) experiment, which has the overarching objective of understanding the chemical aging of air masses that contain the emission products from seasonal boreal wildfires and how these air masses subsequently impact downwind atmospheric composition. The central focus of the experiment was a two-week deployment of the UK BAe-146-301 Atmospheric Research Aircraft (ARA) over eastern Canada, based out of Halifax, Nova Scotia. Atmospheric ground-based and sonde measurements over Canada and the Azores associated with the planned July 2010 deployment of the ARA, which was postponed by 12 months due to UK-based flights related to the dispersal of material emitted by the Eyjafjallajökull volcano, went ahead and constituted phase A of the experiment. Phase B of BORTAS in July 2011 involved the same atmospheric measurements, but included the ARA, special satellite observations and a more comprehensive ground-based measurement suite. The high-frequency aircraft data provided a comprehensive chemical snapshot of pyrogenic plumes from wildfires, corresponding to photochemical (and physical) ages ranging from 45 sr 10 days, largely by virtue of widespread fires over Northwestern Ontario. Airborne measurements reported a large number of emitted gases including semi-volatile species, some of which have not been been previously reported in pyrogenic plumes, with the corresponding emission ratios agreeing with previous work for common gases. Analysis of the NOy data shows evidence of net ozone production in pyrogenic plumes, controlled by aerosol abundance, which increases as a function of photochemical age. The coordinated ground-based and sonde data provided detailed but spatially limited information that put the aircraft data into context of the longer burning season in the boundary layer. Ground-based measurements of particulate matter smaller than 2.5 μm (PM2.5) over Halifax show that forest fires can on an episodic basis represent a substantial contribution to total surface PM2.5
    corecore