1,273 research outputs found
Mapping and characterization of G-quadruplexes in Mycobacterium tuberculosis gene promoter regions
Mycobacterium tuberculosis is the causative agent of tuberculosis (TB), one of the top 10 causes of death worldwide in 2015. The recent emergence of strains resistant to all current drugs urges the development of compounds with new mechanisms of action. G-quadruplexes are nucleic acids secondary structures that may form in G-rich regions to epigenetically regulate cellular functions. Here we implemented a computational tool to scan the presence of putative G-quadruplex forming sequences in the genome of Mycobacterium tuberculosis and analyse their association to transcription start sites. We found that the most stable G-quadruplexes were in the promoter region of genes belonging to definite functional categories. Actual G-quadruplex folding of four selected sequences was assessed by biophysical and biomolecular techniques: all molecules formed stable G-quadruplexes, which were further stabilized by two G-quadruplex ligands. These compounds inhibited Mycobacterium tuberculosis growth with minimal inhibitory concentrations in the low micromolar range. These data support formation of Mycobacterium tuberculosis G-quadruplexes in vivo and their potential regulation of gene transcription, and prompt the use of G4 ligands to develop original antitubercular agents
Influence of the Polymer Structure and its Crystallization on the Interface Resistance in Polymer-LATP and Polymer-LLZO Hybrid Electrolytes
For many years, composite electrolytes (CEs) consisting of a mixture of inorganic solid electrolytes (ISEs) and polymer electrolytes (PEs) have been investigated as promising materials for the scalable production of solid-state batteries (SSBs). It is believed that CEs can overcome limitations of the single components, namely the low room-temperature conductivity and lithium ion transference number of PEs and the poor mechanical properties and high temperature processing necessary for ISE ceramics. To facilitate ion transport in the CE between the electrodes a low and stable charge transfer resistance between PEs and ISEs is required. In this study, we investigate by means of electrochemical impedance spectroscopy (EIS) how polymer crystallinity influences the charge-transfer resistance of hetero-ionic interfaces between polyethylene oxide (PEO)-based electrolytes and LiAlTi(PO) (LATP) as well as LiAlLaZrO (LLZO) as ISEs. Crystallization of PEO based electrolytes below their melting temperature leads to an increased charge-transfer resistance. On the other hand, electrolytes based on the amorphous poly[2-(2-(2-methoxyethoxy)ethoxy)ethyl glycidyl ether (PTG) do not show an increased charge transfer resistance. Finally, the conductivity of ISE-rich CEs is measured as a function of their temperature and composition for elucidating how the interface resistance influences charge transport in ISE-rich composite electrolytes
Recommended from our members
LUVMI: an innovative payload for the sampling of volatiles at the Lunar poles
The ISECG identifies one of the first exploration steps as in situ investigations of the moon or asteroids. Europe is developing payload concepts for drilling and sample analysis, a contribution to a 250kg rover as well as for sample return. To achieve these missions, ESA depends on international partnerships.
Such missions will be seldom, expensive and the drill/sample site selected will be based on observations from orbit not calibrated with ground truth data. Many of the international science community’s objectives can be met at lower cost, or the chances of mission success improved and the quality of the science increased by making use of an innovative, low mass, mobile robotic payload following the LEAG
recommendations.
LUVMI provides a smart, low mass, innovative, modular mobile payload comprising surface and subsurface sensing with an in-situ sampling technology capable of depth-resolved extraction of volatiles, combined with a volatile analyser (mass spectrometer) capable of identifying the chemical composition of the most important volatiles. This will allow LUVMI to: traverse the lunar surface prospecting for volatiles; sample subsurface up to a depth of 10 cm (with a goal of 20 cm); extract water and other loosely bound volatiles; identify the chemical species extracted; access and sample permanently shadowed regions (PSR).
The main innovation of LUVMI is to develop an in situ sampling technology capable of depth-resolved extraction of volatiles, and then to package within this tool, the analyser itself, so as to maximise transfer
efficiency and minimise sample handling and its attendant mass requirements and risk of sample alteration. By building on national, EC and ESA funded research and developments, this project will develop to TRL6 instruments that together form a smart modular mobile payload that could be flight ready in 2020.
The LUVMI sampling instrument will be tested in a highly representative environment including thermal, vacuum and regolith simulant and the integrated payload demonstrated in a representative environment
G-quadruplex forming sequences in the genome of all known human viruses: A comprehensive guide
G-quadruplexes are non-canonical nucleic-acid structures that control transcription, replication, and recombination in organisms. G-quadruplexes are present in eukaryotes, prokaryotes, and viruses. In the latter, mounting evidence indicates their key biological activity. Since data on viruses are scattered, we here present a comprehensive analysis of potential quadruplex-forming sequences (PQS) in the genome of all known viruses that can infect humans. We show that occurrence and location of PQSs are features characteristic of each virus class and family. Our statistical analysis proves that their presence within the viral genome is orderly arranged, as indicated by the possibility to correctly assign up to two-thirds of viruses to their exact class based on the PQS classification. For each virus we provide: i) the list of all PQS present in the genome (positive and negative strands), ii) their position in the viral genome, iii) the degree of conservation among strains of each PQS in its genome context, iv) the statistical significance of PQS abundance. This information is accessible from a database to allow the easy navigation of the results: http://www.medcomp.medicina.unipd.it/main_site/doku.php?id=g4virus. The availability of these data will greatly expedite research on G-quadruplex in viruses, with the possibility to accelerate finding therapeutic opportunities to numerous and some fearsome human diseases
Treatment of a giant hepatic echinococcal cyst with percutaneous drainage and in vivo assessment of the protoscolicidal effect of praziquantel
Therapy choices for cystic echinococcisis (CE) are stage-specific: surgical, minimally invasive, medical or observation without intervention. PAIR (percutaneous aspiration, instillation of a scolicide, and re-aspiration) has been considered the treatment of choice for uncomplicated echinococcal liver cysts. However, PAIR carries the risk of toxic cholangitis or hypernatremia and that the cyst frequently refills with bile after withdrawing the catheter. We treated a patient with a giant CE 1 liver cyst with puncture drainage (PD) under albendazole coverage. Drainage enabled us to monitor the morphology of protoscolices under praziquantel (PZQ) co-medication. Protoscolices degenerated within 5 days of PZQ 50 mg/kg/d. The cyst cavity solidified with no evidence of reactivation or secondary spread. Percutaneous treatments can replace surgery in a significant number or cases with hepatic CE. PD allows to assess microscopically the viability of protoscolices under co-medication with PZQ-albendazole and to avoid the instillation of topical scolicides
Designing Cathodes and Cathode Active Materials for Solid‐State Batteries
Solid-state batteries (SSBs) currently attract great attention as a potentially safe electrochemical high-energy storage concept. However, several issues still prevent SSBs from outperforming today\u27s lithium-ion batteries based on liquid electrolytes. One major challenge is related to the design of cathode active materials (CAMs) that are compatible with the superionic solid electrolytes (SEs) of interest. This perspective, gives a brief overview of the required properties and possible challenges for inorganic CAMs employed in SSBs, and describes state-of-the art solutions. In particular, the issue of tailoring CAMs is structured into challenges arising on the cathode-, particle-, and interface-level, related to microstructural, (chemo-)mechanical, and (electro-)chemical interplay of CAMs with SEs, and finally guidelines for future CAM development for SSBs are proposed
Mechanical stimulation of single cells by reversible host-guest interactions in 3D microscaffolds
Many essential cellular processes are regulated by mechanical properties of their microenvironment. Here, we introduce stimuli-responsive composite scaffolds fabricated by three-dimensional (3D) laser lithography to simultaneously stretch large numbers of single cells in tailored 3D microenvironments. The key material is a stimuli-responsive photoresist containing cross-links formed by noncovalent, directional interactions between β-cyclodextrin (host) and adamantane (guest). This allows reversible actuation under physiological conditions by application of soluble competitive guests. Cells adhering in these scaffolds build up initial traction forces of ~80 nN. After application of an equibiaxial stretch of up to 25%, cells remodel their actin cytoskeleton, double their traction forces, and equilibrate at a new dynamic set point within 30 min. When the stretch is released, traction forces gradually decrease until the initial set point is retrieved. Pharmacological inhibition or knockout of nonmuscle myosin 2A prevents these adjustments, suggesting that cellular tensional homeostasis strongly depends on functional myosin motors
Palaeoproteomic analyses of dog palaeofaeces reveal a preserved dietary and host digestive proteome.
The domestic dog has inhabited the anthropogenic niche for at least 15 000 years, but despite their impact on human strategies, the lives of dogs and their interactions with humans have only recently become a subject of interest to archaeologists. In the Arctic, dogs rely exclusively on humans for food during the winter, and while stable isotope analyses have revealed dietary similarities at some sites, deciphering the details of provisioning strategies have been challenging. In this study, we apply zooarchaeology by mass spectrometry (ZooMS) and liquid chromatography tandem mass spectrometry to dog palaeofaeces to investigate protein preservation in this highly degradable material and obtain information about the diet of domestic dogs at the Nunalleq site, Alaska. We identify a suite of digestive and metabolic proteins from the host species, demonstrating the utility of this material as a novel and viable substrate for the recovery of gastrointestinal proteomes. The recovered proteins revealed that the Nunalleq dogs consumed a range of Pacific salmon species (coho, chum, chinook and sockeye) and that the consumed tissues derived from muscle and bone tissues as well as roe and guts. Overall, the study demonstrated the viability of permafrost-preserved palaeofaeces as a unique source of host and dietary proteomes.DNRF, E
- …