5,678 research outputs found

    Investigating Students' Experiences with Collaboration Analytics for Remote Group Meetings.

    Get PDF
    Remote meetings have become the norm for most students learning synchronously at a distance during the ongoing coronavirus pandemic. This has motivated the use of artificial intelligence in education (AIED) solutions to support the teaching and learning practice in these settings. However, the use of such solutions requires new research particularly with regards to the human factors that ultimately shape the future design and implementations. In this paper, we build on the emerging literature on human-centred AIED and explore students’ experiences after interacting with a tool that monitors their collaboration in remote meetings (i.e., using Zoom) during 10 weeks. Using the social translucence framework, we probed into the feedback provided by twenty students regarding the design and implementation requirements of the system after their exposure to the tool in their course. The results revealed valuable insights in terms of visibility (what should be made visible to students via the system), awareness (how can this information increase students’ understanding of collaboration performance), and accountability (to what extent students take responsibility of changing their behaviours based on the system’s feedback); as well as the ethical and privacy aspects related to the use of collaboration analytics tools in remote meetings. This study provides key suggestions for the future design and implementations of AIED systems for remote meetings in educational settings

    The developmental dynamics of terrorist organizations

    Get PDF
    We identify robust statistical patterns in the frequency and severity of violent attacks by terrorist organizations as they grow and age. Using group-level static and dynamic analyses of terrorist events worldwide from 1968-2008 and a simulation model of organizational dynamics, we show that the production of violent events tends to accelerate with increasing size and experience. This coupling of frequency, experience and size arises from a fundamental positive feedback loop in which attacks lead to growth which leads to increased production of new attacks. In contrast, event severity is independent of both size and experience. Thus larger, more experienced organizations are more deadly because they attack more frequently, not because their attacks are more deadly, and large events are equally likely to come from large and small organizations. These results hold across political ideologies and time, suggesting that the frequency and severity of terrorism may be constrained by fundamental processes.Comment: 28 pages, 8 figures, 4 tables, supplementary materia

    The impact of delays to admission from the emergency department on inpatient outcomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We sought to determine the impact of delays to admission from the Emergency Department (ED) on inpatient length of stay (LOS), and IP cost.</p> <p>Methods</p> <p>We conducted a retrospective analysis of 13,460 adult (≥ 18 yrs) ED visits between April 1 2006 and March 30 2007 at a tertiary care teaching hospital with two ED sites in which the mode of disposition was admission to ICU, surgery or inpatient wards. We defined ED Admission Delay as ED time to decision to admit > 12 hours. The primary outcomes were IP LOS, and total IP cost.</p> <p>Results</p> <p>Approximately 11.6% (n = 1558) of admitted patients experienced admission delay. In multivariate analysis we found that admission delay was associated with 12.4% longer IP LOS (95% CI 6.6% - 18.5%) and 11.0% greater total IP cost (6.0% - 16.4%). We estimated the cumulative impact of delay on all delayed patients as an additional 2,183 inpatient days and an increase in IP cost of $2,109,173 at the study institution.</p> <p>Conclusions</p> <p>Delays to admission from the ED are associated with increased IP LOS and IP cost. Improving patient flow through the ED may reduce hospital costs and improve quality of care. There may be a business case for investments to reduce emergency department admission delays.</p

    Algebraic Bethe ansatz method for the exact calculation of energy spectra and form factors: applications to models of Bose-Einstein condensates and metallic nanograins

    Full text link
    In this review we demonstrate how the algebraic Bethe ansatz is used for the calculation of the energy spectra and form factors (operator matrix elements in the basis of Hamiltonian eigenstates) in exactly solvable quantum systems. As examples we apply the theory to several models of current interest in the study of Bose-Einstein condensates, which have been successfully created using ultracold dilute atomic gases. The first model we introduce describes Josephson tunneling between two coupled Bose-Einstein condensates. It can be used not only for the study of tunneling between condensates of atomic gases, but for solid state Josephson junctions and coupled Cooper pair boxes. The theory is also applicable to models of atomic-molecular Bose-Einstein condensates, with two examples given and analysed. Additionally, these same two models are relevant to studies in quantum optics. Finally, we discuss the model of Bardeen, Cooper and Schrieffer in this framework, which is appropriate for systems of ultracold fermionic atomic gases, as well as being applicable for the description of superconducting correlations in metallic grains with nanoscale dimensions. In applying all of the above models to physical situations, the need for an exact analysis of small scale systems is established due to large quantum fluctuations which render mean-field approaches inaccurate.Comment: 49 pages, 1 figure, invited review for J. Phys. A., published version available at http://stacks.iop.org/JPhysA/36/R6

    The spine of the swan: A Herschel study of the DR21 ridge and filaments in Cygnus X

    Get PDF
    In order to characterise the cloud structures responsible for the formation of high-mass stars, we present Herschel observations of the DR21 environment. Maps of the column density and dust temperature unveil the structure of the DR21 ridge and several connected filaments. The ridge has column densities larger than 1e23/cm^2 over a region of 2.3 pc^2. It shows substructured column density profiles and branching into two major filaments in the north. The masses in the studied filaments range between 130 and 1400 Msun whereas the mass in the ridge is 15000 Msun. The accretion of these filaments onto the DR21 ridge, suggested by a previous molecular line study, could provide a continuous mass inflow to the ridge. In contrast to the striations seen in e.g., the Taurus region, these filaments are gravitationally unstable and form cores and protostars. These cores formed in the filaments potentially fall into the ridge. Both inflow and collisions of cores could be important to drive the observed high-mass star formation. The evolutionary gradient of star formation running from DR21 in the south to the northern branching is traced by decreasing dust temperature. This evolution and the ridge structure can be explained by two main filamentary components of the ridge that merged first in the south.Comment: 8 pages, 5 figures, accepted for publication as a Letter in Astronomy and Astrophysic

    32-core inline multicore fiber amplifier for dense space division multiplexed transmission system

    No full text
    We present a high-core-count SDM amplifier, i.e. 32-core multicore-fiber amplifier, in a cladding-pumped configuration. An average gain of 17dB and NF of 7dB is obtained for -5dBm input signal power in the wavelength range 1544nm-1564nm

    MTN-001: Randomized Pharmacokinetic Cross-Over Study Comparing Tenofovir Vaginal Gel and Oral Tablets in Vaginal Tissue and Other Compartments

    Get PDF
    Background: Oral and vaginal preparations of tenofovir as pre-exposure prophylaxis (PrEP) for human immunodeficiency virus (HIV) infection have demonstrated variable efficacy in men and women prompting assessment of variation in drug concentration as an explanation. Knowledge of tenofovir concentration and its active form, tenofovir diphosphate, at the putative vaginal and rectal site of action and its relationship to concentrations at multiple other anatomic locations may provide key information for both interpreting PrEP study outcomes and planning future PrEP drug development. Objective: MTN-001 was designed to directly compare oral to vaginal steady-state tenofovir pharmacokinetics in blood, vaginal tissue, and vaginal and rectal fluid in a paired cross-over design. Methods and Findings: We enrolled 144 HIV-uninfected women at 4 US and 3 African clinical research sites in an open label, 3-period crossover study of three different daily tenofovir regimens, each for 6 weeks (oral 300 mg tenofovir disoproxil fumarate, vaginal 1% tenofovir gel [40 mg], or both). Serum concentrations after vaginal dosing were 56-fold lower than after oral dosing (p<0.001). Vaginal tissue tenofovir diphosphate was quantifiable in ≥90% of women with vaginal dosing and only 19% of women with oral dosing. Vaginal tissue tenofovir diphosphate was ≥130-fold higher with vaginal compared to oral dosing (p<0.001). Rectal fluid tenofovir concentrations in vaginal dosing periods were higher than concentrations measured in the oral only dosing period (p<0.03). Conclusions: Compared to oral dosing, vaginal dosing achieved much lower serum concentrations and much higher vaginal tissue concentrations. Even allowing for 100-fold concentration differences due to poor adherence or less frequent prescribed dosing, vaginal dosing of tenofovir should provide higher active site concentrations and theoretically greater PrEP efficacy than oral dosing; randomized topical dosing PrEP trials to the contrary indicates that factors beyond tenofovir's antiviral effect substantially influence PrEP efficacy. Trial Registration: ClinicalTrials.gov NCT00592124
    • …
    corecore