33,496 research outputs found

    The many levels pairing Hamiltonian for two pairs

    Full text link
    We address the problem of two pairs of fermions living on an arbitrary number of single particle levels of a potential well (mean field) and interacting through a pairing force. The associated solutions of the Richardson's equations are classified in terms of a number vlv_l, which reduces to the seniority vv in the limit of large values of the pairing strength GG and yields the number of pairs not developing a collective behaviour, their energy remaining finite in the G→∞G\to\infty limit. We express analytically, through the moments of the single particle levels distribution, the collective mode energy and the two critical values Gcr+G_{\rm cr}^{+} and Gcr−G_{\rm cr}^{-} of the coupling which can exist on a single particle level with no pair degeneracy. Notably Gcr+G_{\rm cr}^{+} and Gcr−G_{\rm cr}^{-} merge when the number of single particle levels goes to infinity, where they coincide with the GcrG_{\rm cr} (when it exists) of a one pair system, not envisioned by the Richardson theory. In correspondence of GcrG_{\rm cr} the system undergoes a transition from a mean field to a pairing dominated regime. We finally explore the behaviour of the excitation energies, wave functions and pair transfer amplitudes finding out that the former, for G>Gcr−G>G_{\rm cr}^{-}, come close to the BCS predictions, whereas the latter display a divergence at GcrG_{\rm cr}, signaling the onset of a long range off-diagonal order in the system.Comment: 35 pages, 6 figures, 2 tables, to be published in EPJ

    On the analytic solution of the pairing problem: one pair in many levels

    Get PDF
    We search for approximate, but analytic solutions of the pairing problem for one pair of nucleons in many levels of a potential well. For the collective energy a general formula, independent of the details of the single particle spectrum, is given in both the strong and weak coupling regimes. Next the displacements of the solutions trapped in between the single particle levels with respect to the unperturbed energies are explored: their dependence upon a suitably defined quantum number is found to undergo a transition between two different regimes.Comment: 30 pages, AMS Latex, 8 figures. Submitted to Phys. Rev.

    Reducing inappropriate antibiotics prescribing: The role of online commentary on physical examination findings

    Get PDF
    Objective: This study investigates the relationship of ‘online commentary’(contemporaneous physician comments about physical examination [PE] findings) with (i) parent questioning of the treatment recommendation and (ii) inappropriate antibiotic prescribing. Methods: A nested cross-sectional study of 522 encounters motivated by upper respiratory symptoms in 27 California pediatric practices (38 pediatricians). Physicians completed a post-visit survey regarding physical examination findings, diagnosis, treatment, and whether they perceived the parent as expecting an antibiotic. Taped encounters were coded for ‘problem’ online commentary (PE findings discussed as significant or clearly abnormal) and ‘no problem’ online commentary (PE findings discussed reassuringly as normal or insignificant). Results: Online commentary during the PE occurred in 73% of visits with viral diagnoses (n = 261). Compared to similar cases with ‘no problem’ online commentary, ‘problem’ comments were associated with a 13% greater probability of parents uestioning a non-antibiotic treatment plan (95% CI 0-26%, p = .05,) and a 27% (95% CI: 2-52%, p < .05) greater probability of an inappropriate antibiotic prescription. Conclusion: With viral illnesses, problematic online comments are associated with more pediatrician-parent conflict over non-antibiotic treatment recommendations. This may increase inappropriate antibiotic prescribing. Practice implications: In viral cases, physicians should consider avoiding the use of problematic online commentary

    Novel atmospheric extinction measurement techniques for aerospace laser system applications

    Get PDF
    Novel techniques for laser beam atmospheric extinction measurements, suitable for manned and unmanned aerospace vehicle applications, are presented in this paper. Extinction measurements are essential to support the engineering development and the operational employment of a variety of aerospace electro-optical sensor systems, allowing calculation of the range performance attainable with such systems in current and likely future applications. Such applications include ranging, weaponry, Earth remote sensing and possible planetary exploration missions performed by satellites and unmanned flight vehicles. Unlike traditional LIDAR methods, the proposed techniques are based on measurements of the laser energy (intensity and spatial distribution) incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. Various laser sources can be employed with wavelengths from the visible to the far infrared portions of the spectrum, allowing for data correlation and extended sensitivity. Errors affecting measurements performed using the proposed methods are discussed in the paper and algorithms are proposed that allow a direct determination of the atmospheric transmittance and spatial characteristics of the laser spot

    The integration of on-line monitoring and reconfiguration functions using IEEE1149.4 into a safety critical automotive electronic control unit.

    Get PDF
    This paper presents an innovative application of IEEE 1149.4 and the integrated diagnostic reconfiguration (IDR) as tools for the implementation of an embedded test solution for an automotive electronic control unit, implemented as a fully integrated mixed signal system. The paper describes how the test architecture can be used for fault avoidance with results from a hardware prototype presented. The paper concludes that fault avoidance can be integrated into mixed signal electronic systems to handle key failure modes

    New techniques for laser beam atmospheric extinction measurements from manned and unmanned aerospace vehicles

    Get PDF
    Novel techniques for laser beam atmospheric extinction measurements, suitable for several air and space platform applications, are presented in this paper. Extinction measurements are essential to support the engineering development and the operational employment of a variety of aerospace electro-optical sensor systems, allowing calculation of the range performance attainable with such systems in current and likely future applications. Such applications include ranging, weaponry, Earth remote sensing and possible planetary exploration missions performed by satellites and unmanned flight vehicles. Unlike traditional LIDAR methods, the proposed techniques are based on measurements of the laser energy (intensity and spatial distribution) incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. Various laser sources can be employed with wavelengths from the visible to the far infrared portions of the spectrum, allowing for data correlation and extended sensitivity. Errors affecting measurements performed using the proposed methods are discussed in the paper and algorithms are proposed that allow a direct determination of the atmospheric transmittance and spatial characteristics of the laser spot. These algorithms take into account a variety of linear and non-linear propagation effects. Finally, results are presented relative to some experimental activities performed to validate the proposed techniques. Particularly, data are presented relative to both ground and flight trials performed with laser systems operating in the near infrared (NIR) at ?= 1064 nm and ?= 1550 nm. This includes ground tests performed with 10 Hz and 20 KHz PRF NIR laser systems in a large variety of atmospheric conditions, and flight trials performed with a 10 Hz airborne NIR laser system installed on a TORNADO aircraft, flying up to altitudes of 22,000 ft

    Modular converter system for low-cost off-grid energy storage using second life Li-ion batteries

    Full text link
    Lithium ion batteries are promising for small off- grid energy storage applications in developing countries because of their high energy density and long life. However, costs are prohibitive. Instead, we consider 'used' Li-ion batteries for this application, finding experimentally that many discarded laptop cells, for example, still have good capacity and cycle life. In order to make safe and optimal use of such cells, we present a modular power management system using a separate power converter for every cell. This novel approach allows individual batteries to be used to their full capacity. The power converters operate in voltage droop control mode to provide easy charge balancing and implement a battery management system to estimate the capacity of each cell, as we demonstrate experimentally.Comment: Presented at IEEE GHTC Oct 10-14, 2014, Silicon Valle

    Design-for-test structure to facilitate test vector application with low performance loss in non-test mode.

    Get PDF
    A switching based circuit is described which allows application of voltage test vectors to internal nodes of a chip without the problem of backdriving. The new circuit has low impact on the performance of an analogue circuit in terms of loss of bandwidth and allows simple application of analogue test voltages into internal nodes. The circuit described facilitates implementation of the forthcoming IEEE 1149.4 DfT philosophy [1]
    • 

    corecore