20,864 research outputs found

    Discharge coefficients for thick-plate orifices

    Get PDF
    Investigation enables more accurate prediction of coolant flows within internally cooled turbine blades and vanes. The data is applicable for predicting flows in complex flow passages

    Ionization behavior of the histidine residue in the catalytic triad of serine proteases

    Get PDF
    α-Lytic protease is a homologue of the mammalian serine proteases such as trypsin, chymotrypsin, and elastase, and its single histidine residue belongs to the Asp-His-Ser catalytic triad. This single histidine residue has been selectively enriched in the C-2 carbon with 13C. Magnetic resonance studies of the chemical shift and coupling constant (1Jch) behavior of this nucleus as a function of pH suggest that the imidazole ring is neutral above pH 5 and therefore that the group which is known to ionize with pKa near 6.7 must be the aspartic acid residue. Implications of these new pKa assignments for the catalytic mechanism of serine proteases are discussed and include the absence of any need to separate charge during catalysis. The histidine residue plays two roles. (a) It insulates the aspartic acid from an aqueous environment and accordingly raises its pKa. (b) It serves as a bidentate base to accept a proton from the serine at one of its nitrogens and concertedly transfer a proton from its other nitrogen to the buried carboxylate anion during formation of the tetrahedral intermediate

    The effect of parallel static and microwave electric fields on excited hydrogen atoms

    Get PDF
    Motivated by recent experiments we analyse the classical dynamics of a hydrogen atom in parallel static and microwave electric fields. Using an appropriate representation and averaging approximations we show that resonant ionisation is controlled by a separatrix, and provide necessary conditions for a dynamical resonance to affect the ionisation probability. The position of the dynamical resonance is computed using a high-order perturbation series, and estimate its radius of convergence. We show that the position of the dynamical resonance does not coincide precisely with the ionisation maxima, and that the field switch-on time can dramatically affect the ionisation signal which, for long switch times, reflects the shape of an incipient homoclinic. Similarly, the resonance ionisation time can reflect the time-scale of the separatrix motion, which is therefore longer than conventional static field Stark ionisation. We explain why these effects should be observed in the quantum dynamics. PACs: 32.80.Rm, 33.40.+f, 34.10.+x, 05.45.Ac, 05.45.MtComment: 47 pages, 20 figure

    A dynamic model of Venus's gravity field

    Get PDF
    Unlike Earth, long wavelength gravity anomalies and topography correlate well on Venus. Venus's admittance curve from spherical harmonic degree 2 to 18 is inconsistent with either Airy or Pratt isostasy, but is consistent with dynamic support from mantle convection. A model using whole mantle flow and a high viscosity near surface layer overlying a constant viscosity mantle reproduces this admittance curve. On Earth, the effective viscosity deduced from geoid modeling increases by a factor of 300 from the asthenosphere to the lower mantle. These viscosity estimates may be biased by the neglect of lateral variations in mantle viscosity associated with hot plumes and cold subducted slabs. The different effective viscosity profiles for Earth and Venus may reflect their convective styles, with tectonism and mantle heat transport dominated by hot plumes on Venus and by subducted slabs on Earth. Convection at degree 2 appears much stronger on Earth than on Venus. A degree 2 convective structure may be unstable on Venus, but may have been stabilized on Earth by the insulating effects of the Pangean supercontinental assemblage

    Meson-meson interactions -- from static to dynamic valence quarks

    Full text link
    A method for the extraction of an effective meson-meson potential from Green functions, which can be obtained from a lattice simulation, is presented. Simulations are carried out for compact QED and QCD in four dimensions using the quenched approximation and the hopping parameter expansion. In a further study, a heavy-light meson is considered employing a conjugate gradient algorithm for the light propagators. Due to the Pauli exclusion principle, the results for QED indicate the existence of a hard core, but for QCD there is strong attraction at small meson distances.Comment: 4 pages, uuencoded gziped postscript file, contribution to LATTICE'95, Melbourne, Australia (list of authors completed

    AGN and starbursts at high redshift: High resolution EVN radio observations of the Hubble Deep Field

    Get PDF
    We present deep, wide-field European VLBI Network (EVN) 1.6 GHz observations of the Hubble Deep Field (HDF) region with a resolution of 0.025 arcseconds. Above the 210 microJy/beam (5sigma) detection level, the EVN clearly detects two radio sources in a field that encompasses the HDF and part of the Hubble Flanking Fields (HFF). The sources detected are: VLA J123644+621133 (a z=1.013, low-luminosity FR-I radio source located within the HDF itself) and VLA J123642+621331 (a dust enshrouded, optically faint, z=4.424 starburst system). A third radio source, J123646+621404, is detected at the 4sigma level. The VLBI detections of all three sources suggest that most of the radio emission of these particular sources (including the dusty starburst) is generated by an embedded AGN.Comment: 4 pages, 1 figure; Accepted by Astron. & Astrophys Letters ... See http://www.nfra.nl/~mag/hdf_evn.htm

    A MERLIN Study of 6 GHz Excited-state OH & 6.7 GHz Methanol Masers in ON1

    Full text link
    MERLIN observations of 6.668-GHz methanol and both 6.031- and 6.035-GHz hydroxyl (OH) emission from the massive star-formation region ON1 are presented. These are the first methanol observations made in full polarization using 5 antennas of MERLIN, giving high resolution and sensitivity to extended emission. Maser features are found to lie at the southern edge of the ultra-compact HII region, following the known distribution of ground-state OH masers. The masers cover a region ~1 arcsec in extent, lying perpendicular to the H13CO+ bipolar outflow. Excited-state OH emission demonstrates consistent polarization angles across the strongest linearly polarized features which are parallel to the overall distribution. The linear polarizations vary between 10.0 and 18.5 per cent, with an average polarization angle of -60 deg +/- 28 deg. The strongest 6.668-GHz methanol features provide an upper limit to linear polarization of ~1 per cent. Zeeman splitting of OH shows magnetic fields between -1.1 to -5.8 mG, and a tentative methanol magnetic field strength of -18 mG is measured.Comment: 10 Pages, 5 Figure
    corecore