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Abstract. The classical dynamics of the hydrogen atom in parallel static
and microwave electric fields are analysed. This work is motivated by recent
experiments on excited hydrogen atoms in such fields, which show enhanced
resonant ionization at certain combinations of field strengths.

By analysing the dynamics using an appropriate representation and averaging
approximations, a simple picture of the ionization process is obtained. This
shows how the resonant dynamics are controlled by a separatrix that develops and
moves through phase space as the fields are switched on and provides necessary
conditions for a dynamical resonance to affect the ionization probability. In
addition, these methods yield a simple approximate Hamiltonian that facilitates
quantal calculations.

Using high-order perturbation theory, we obtain a series expansion for
the position of the dynamical resonance and an estimate for its radius of
convergence. Because, unusually, the resonance island moves through the phase
space, the position of the dynamical resonance does not coincide precisely with
the ionization maxima. Moreover, there are circumstances in which the field
switch-on time dramatically affects the classical ionization probability; for long
switch times, it reflects the shape of the incipient homoclinic tangle of the initial
state, making it impossible to predict the resonance shape. Additionally, for a
similar reason, the resonance ionization time can reflect the timescale of the
motion near the separatrix, which is therefore much longer than conventional
static field Stark ionization. All these effects are confirmed using accurate Monte
Carlo calculations using the exact Hamiltonian.

The dynamical structures producing these effects are present in the quantum
dynamics; so we conclude that, for sufficiently large principal quantum numbers,
the effects seen here will also be observed in the quantum dynamics.
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1. Introduction

A strong electromagnetic field can perturb an atom in many unexpected and complicated ways
that are difficult to understand. If the atom is initially in an excited state, usually a large number of
unperturbed bound states are coupled, making the numerical solution of Schrödinger’s equation
difficult. Moreover, the corresponding classical dynamics is normally partially chaotic—meaning
that there are both unstable and stable orbits close to the initial unperturbed torus—and the wave
function mimics this behaviour (see for instance Leopold and Richards (1994) and Richards
(1996b)), thus making the interpretation of numerical solutions difficult.

The investigation of the effects of strong periodic fields on an excited atom dates from the
original experiments of Bayfield and Koch (1974), which showed that a relatively weak field
could produce a multiphoton transition into the continuum, contrary to the received wisdom
of quantal perturbation theory. The subsequent history of this interesting problem is told by
Koch (1990). In 1974, conventional quantal theory required high-order perturbation theory to
describe the 80 photon jumps to the continuum of this early experiment. This was, and remains,
an impossible calculation, but the theory was rescued by Delone et al (1978) who proposed
that the classical ionization mechanism involved diffusion of the electron through atomic states
highly perturbed by the field. A year later, Meerson et al (1979) proposed a different classical
diffusion approximation. In the same year, Leopold and Percival (1979) used a classical Monte
Carlo trajectory method to estimate classical ionization probabilities and obtained qualitative
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agreement with experiment. In 1985, the experiment was repeated with better control of all
important parameters and the comparison between these results and a classical Monte Carlo
simulation by van Leeuwen et al (1985), showed remarkable agreement.

Since then our understanding of the dynamics of this type of system and the relationship
between classical and quantal solutions in different parameter regimes has developed. For
instance, we now know that the scaled frequency—the ratio between of driving frequency and the
Kepler frequency of the initial unperturbed motion—is one of the most significant parameters and
that there are six separate scaled frequency regions in which the dynamics have quite different
characteristics, see for instance Koch and van Leeuwen (1995) or Richards (1997a).

Linearly polarized fields with low scaled-frequencies were considered by Richards et al
(1989) and there it was found that at particular scaled frequencies, quantal effects were important
due to resonances between two adiabatic states, see also Dando and Richards (1993). Low-
frequency elliptically polarized fields (Bellermann et al 1996, 1997, Koch and Bellermann
2000) showed the existence of complicated resonance structures that can be explained using
classical dynamics (Richards 1997b). When the scaled frequency is close to unity, the main
classical resonance island plays a dominant and similar role in both the classical and quantal
dynamics, except at certain frequencies where scars produce differences (Leopold and Richards
1994, Richards 1996b). At higher scaled frequencies, classical dynamics fails, as predicted by
Casati et al (1984), and demonstrated by Galvez et al (1988) for linearly polarized fields and, for
elliptically polarized fields, by Wilson (2003). These different behaviours have been the subject
of several reviews (Jensen et al 1991, Koch 1990, 1995, Koch and van Leeuwen 1995).

In this paper, we consider the effect of strong, parallel static and oscillatory fields on an
excited hydrogen atom, the work being motivated by recent experiments of Professor Koch’s
group. These two fields affect the system in complicated ways. Roughly, the static field splits
the hydrogen degeneracy introducing another frequency to the system with which the external
field can resonate. Classically, this means that the Kepler ellipse moves periodically and
this motion can resonate with the driving field. Such resonances can enhance the ionization
probability so a significant part of this paper is devoted to understanding the dynamics of
these resonances and the mechanism causing enhanced ionization. Preliminary experimental
results and some comparisons with classical Monte Carlo calculations are given by Galvez et al
(2000); a more detailed discussion of the experimental method with more extensive results and
comparisons with classical calculations is in preparation (Galvez et al 2005), and there it will be
shown that there is remarkable agreement between the classical Monte Carlo calculations and
experiment.

In these experiments, excited hydrogen atoms are subjected to strong parallel static and
periodic fields, so the external force on the electron is (Fs + Fµ cos �t)ẑ: the accurate theoretical
description of this system presents a challenge. The main observed effect of this field combination
is to produce an ionization probability that, for fixed Fµ and �, rises steadily as Fs is increased,
but which is punctuated by a series of approximately equally spaced sharp local maxima, see for
instance figure 1 in Galvez et al (2000) and figure 1 of this paper. Each local maximum is produced
by a resonance between the periodic part of the perturbation, ẑFµ cos �t, and the mean rotational
motion of the Kepler ellipse induced by the static part, ẑFs. These peaks are relatively narrow
but their shapes, widths and heights vary significantly with the system parameters. Moreover,
they disappear at certain values of Fµ and Fs, for reasons that are outlined in Galvez et al (2000);
similar explanations are provided by Oks and Uzer (2000) and Ostrovsky and Horsdal-Pedersen
(2003).
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Since the publication of the original Galvez et al (2000) paper, we have made detailed
comparisons between the ionization probabilities of the experiment and classical Monte Carlo
simulations, which will be published in Galvez et al (2005). These comparisons show remarkable
agreement in many instances, but also some differences, some of which may be attributed
to unquantifiable differences between the assumed substate distribution. In experiment and
calculations, we observed systematic differences between both the positions of the resonances
and of their disappearances and the predictions of the simple theories. In an attempt to
understand these differences, more detailed numerical investigations of the classical dynamics
were undertaken and these calculations show that the dynamics underlying the apparently simple,
averaged results seen in figure 1 are, in fact, very complicated: even an accurate theoretical
prediction of positions of the local maxima in the ionization probability is fraught with difficulties
in classical and quantum dynamics. Further, it transpires that the nature of the resonance that
causes these maxima is unusual, in that the classical resonant island moves as the field is
switched on; in some circumstances, this means that the classical ionization probabilities reflect
the development of a homoclinic tangle, see figures 18 and 19. The size of the quantum numbers
needed for the quantum dynamics to mimic this behaviour is not known.

This paper has two main aims. First, to provide a theoretical understanding of the classical
dynamics and to isolate those features that determine the nature of these resonances, for example
their positions and temporal development. Second, we need to derive an approximate Hamiltonian
that leads to a numerically tractable Schrödinger equation. Both aims are achieved by using a
representation in which coupling between basis states is relatively small.

In section 2, our notation is defined and we present some numerical results illustrating the
phenomena that needs to be understood. In section 3, the approximations are developed; this is
algebraically complicated but, in essence, it is simply a standard use of perturbation theory and
averaging approximations. However, for two reasons, care is needed with this theory. Firstly, the
convergence of the perturbation expansion needs to be understood because the fields used are
strong and, it transpires, sometimes beyond the radius of convergence of the series. Secondly, it
is shown that the various observable effects are produced by subsets of terms and it is necessary
to determine their origin because only some subsets can be computed to high order—this means
that some effects, such as the resonance positions, can be computed to high order, but others
cannot. This analysis is necessary partly to extend the earlier approaches beyond first order and
partly to show how ionization occurs, a feature missing from all earlier theories of this system.
Furthermore, from this analysis emerges an approximate Hamiltonian that facilitates a quantal
calculation.

In section 4, the mechanism connecting the dynamical resonances, described in section 3,
with ionization is described. A significant result of this analysis is that the positions of the
dynamical resonance are not precisely the same as the positions of the local maxima seen in
ionization curves; although small, an estimate of the difference seems beyond the current theory.
In this section, we determine some necessary conditions for a dynamical resonance to affect
ionization and also obtain accurate estimates for the position at which the resonances observed
by Galvez et al (2000) disappear, see also Schultz (2003) and Schultz et al (2005). We also
discuss resonance widths and show that for the current experiments, which involve an average
over substates, the width is not due to the variations of the resonance position with substate
(which is relatively small), but is mainly due to non-adiabatic dynamical effects that are difficult
to quantify.
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In section 5 we analyse the time required for a resonance to develop and show this to be
relatively long. Furthermore, we observe that the nature of the resonance island means that the
classical ionization probability can be significantly affected by the field envelope. In particular,
in some circumstances, the ionization probability can reflect an incipient homoclinic tangle that
develops as the initial state moves slowly through a separatrix.

2. Notation

The Hamiltonian for the hydrogen atom in parallel static and microwave electric fields, as in the
experiments of Galvez et al (2000, 2005), has been derived by Leopold and Richards (1991) and,
provided the field envelope λ(t) changes sufficiently slowly, is given by

H = 1

2µ
P2 − e2

r
+ F(t)z, F(t) = (Fs + Fµ cos �t)λ(t), (1)

where µ is the atomic reduced mass, e the electron charge and λ(t) the envelope function
describing the passage of the atom through the cavity. This Hamiltonian has azimuthal symmetry
so that the z-component of angular momentum, Im, is conserved. For the particular experiments
described by Galvez et al (2005), λ(t) has the 16-113-16 configuration, meaning that it rises
monotonically from zero to unity in 16 field periods, remains constant for 113 periods and then
decreases monotonically to zero in 16 periods. In all calculations reported here, the initial rise
over Na field periods is taken to be

λ(t) = x2(2 − x2), �t = 2πNax, 0 � x � 1,

and the decrease as the field is switched off has the same shape. Classical ionization probabilities
are normally insensitive to small changes in λ(t); exceptions to this rule are discussed in
section 6.

For excited atoms, it is convenient to use units defined by the initial unperturbed Kepler
ellipse which has the semi-major axis a = I2

0/(µe2) and frequency ωK = µe4/I3
0 , I0 = n0 h̄,

where I0 and n0 are the initial values of principal action and quantum number respectively:
scaled units are convenient because the magnitude of most scaled parameters that produce similar
physical effects change little with n0. The scaled frequency and field amplitude are defined by

�0 = �

ωK

= �I3
0

µe4
= �

GHz
(0.00533757n0)

3
,

F0 = a2F

e2
= FI0

4

µ2e6
= F

V/cm
(0.00373535n0)

4
.

(2)

The scaled time is t0 = ωKt and a scaled action is I/I0. In the current experiment, � = 8.105 GHz,
so �0 = (0.010722n0)

3. In the following, we use the symbols Fs and Fµ for both the scaled and
actual field amplitudes and t for scaled and actual time: this misuse of notation avoids a clutter
of subscripts but should not cause confusion because scaled quantities are dimensionless.

2.1. Some numerical results

Before describing the theory, we show the results of a few classical calculations in order to
provide the reader with an idea of the features that a theory needs to describe. For the present
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calculations, a Monte Carlo method, as described inAbrines and Percival (1966), is used in which
N initial conditions are chosen from a microcanonical ensemble: if M of these orbits ionize, the
estimate of the ionization probability is Pi = M/N. Without stratification, the standard deviation
of this estimate is (Hammersley and Handscomb 1964)

σ =
√

Pi(1 − Pi)

N
, Pi = M

N
,

meaning that there is a 68 and 95% probability of the true result being in the ranges (Pi − σ, Pi + σ)

and (Pi − 2σ, Pi + 2σ) respectively. In the present calculations, the sample of initial conditions
is stratified by dividing the range of each variable into equally probable intervals and choosing,
from a microcanonical distribution, one point at random in each subinterval, see Abrines and
Percival (1966). Stratification reduces the statistical errors and sample calculations suggest
that with this form of stratification, the true value of σ is about half the above estimate. For
the numerical integration of Hamilton’s equations, the problem associated with the Coulomb
singularity is circumvented by using the regularization method described in (Rath and Richards
1988): numerical integration was performed with the NAG routine D02CAF.

Figure 1 shows a ‘typical’ classical ionization curve with the ionization probability, Pi,
changing with the static field Fs, for fixed microwave field, Fµ and frequency, �0: here
a microcanonical distribution of substates is used. For this illustration we choose �0 =
0.0980 (n0 = 43) and Fµ = 0.10: the field envelope was 16-80-16 and for each value of Fs,
1296 orbits were used.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

0.2

0.4

0.6

0.8

1

j=1

j=2
j=3

F
s

P
i
(F

s
) j=4

j=5

Figure 1. Ionization curve for �0 = 0.0980 (n0 = 43) and Fµ = 0.1.

The broad features are clear: Pi = 0 for Fs < 0.013 and Pi = 1 for large Fs, typically
Fs > 0.2. As Fs increases between these values, the steady increase in Pi(Fs) is punctuated
only by sharp local maxima at almost equal intervals in Fs, at Fs = 0.0316, 0.0620, 0.0916 and
0.1203; a close inspection of the data shows another small maximum at Fs � 0.148, marked
by an arrow. The small amplitude undulations seen in this ionization curve are assumed to be
caused by the statistical errors mentioned above, and provide a visual estimate of the magnitude
of these errors. The variation in the scale length of these oscillations in Fs is due to variations in
the Fs-interval used, which was smallest near the local maxima of Pi.

New Journal of Physics 7 (2005) 138 (http://www.njp.org/)

http://www.njp.org/


7 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

0 0.02 0.04 0.06 0.08

0.2

0.4

0.6

0.8

1

0 0.02 0.04 0.06 0.08

0.2

0.4

0.6

0.8

1

0 0.02 0.04 0.06 0.08

0.2

0.4

0.6

0.8

1
P

i

F
s

P
i

P
i

F
s F

s

Fµ=0.13 Fµ=0.14 Fµ=0.15

j=1

2 3 4

j=1

j=12 2
3

3 4

Figure 2. Ionization probabilities for �0 = 0.0528, I2(0) = Im = 0.2 (Ie(0) =
−0.4) with the 16-50-16 envelope and for various values of Fµ.

We denote the positions of these maxima in Pi(Fs) by F (j)
s . Theory associates these maxima

with a resonance between the driving field and the precession of the atomic Kepler ellipse
and we denote the position of these resonances by F(j)

s . The two field values F(j)
s and F (j)

s

are approximately the same but are not identical, which is why it is necessary to use different
symbols.

Elementary consideration, section 3.5, shows that F(j)
s � �0j/3 (in scaled units), giving

0.0327, 0.0653, 0.0980 and 0.131, and hence the relative differences between �0j/3 and F (j)
s

are 3.5, 5.3, 7 and 9% respectively. The more accurate theory developed in section 4.2, gives
F(j)

s = 0.0316, 0.0623, 0.0904 and 0.112, for j = 1–4, with relative differences of 0.5, 1.3
and 7%, respectively, for j = 2, 3 and 4, with the values for j = 1 agreeing to three figure
accuracy.

The averaged ionization probabilities disguise a richer and more complicated behaviour. In
figure 2, ionization probabilities from a given substate I2 = Im = 0.2 are shown—these scaled
actions are defined below in equations (8) and (9). Here �0 = 0.0528 (n0 = 35) and 1600 orbits
were used for each Fs. The arrows point to Fs = F

(+)
crit − Fµ, where F

(+)
crit is defined in equation

(21) below.
At the lowest microwave field, Fµ = 0.13, a number of local maxima are seen: those labelled

j = 1–4 can be associated with a dynamical resonance, and most are visible for Fµ = 0.14 and
0.15. For Fµ = 0.13 there are also a number of other local maxima, at Fs = 0.0430, 0.0535 and
0.0705 the origin of which is not known, but in section 5 results are presented which suggest that
the maximum at Fs = 0.0430 is a non-integer resonance, equivalent to j = 2 2

3 . In this example,
Pi = 0 for Fs < 0.016 and Pi = 1 for Fs > 0.076, with an underlying steady increase in Pi(Fs)

for Fs > 0.045.
For Fµ = 0.14, the four labelled maxima of the previous figure persist but have shifted

slightly and the j = 3 maxima has split: we have confirmed that the latter effect is not due to
statistical sampling errors. In other calculations with a shorter rise time of four field periods there
is no split, suggesting that it is caused by the field envelope: this and other effects of the field
envelope are discussed in section 6. The j = 1 maximum near Fs = 0.0166 is lower and the
theory developed below shows that it disappears completely for Fµ � 0.147 and Fs � 0.0161.
A new feature in this graph is the large value of Pi at Fs = 0, with Pi falling rapidly to zero as Fs

increases to 0.007. For Fs > 0.035, the underlying trend in Pi is a steady increase to unity, but
all other structures are not understood.
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Figure 3. Ionization probabilities for �0 = 0.0528, I2(0) = Im = 0.2 (Ie(0) =
−0.4) with Fµ = 0.15 and envelopes 4-50-4 and 40-50-40.

For Fµ = 0.150, the three labelled maxima persist, but have shifted and broadened. Now Pi

is large for Fs < 0.013 and Fs > 0.04 and there is a new maximum at Fs = 0.0192, the existence
and magnitude of which depends upon the switch-on time, see figure 3: we have confirmed that,
at these low frequencies, Pi is affected insignificantly by the switch-off time, provided the total
interaction time is sufficiently long.

Table 1. Values of F (j)
s , computed by the method described in the text, and F(j)

s

given by the theory described in section 4.2. Other parameters are as in figure 2.

Fµ = 0.13 Fµ = 0.14 Fµ = 0.15
j Monte Carlo Theory Monte Carlo Theory Monte Carlo Theory

1 0.0166 0.0166 0.0162 0.0164 0.0158 0.0160
2 0.0327 0.0330 0.0320–0.0323 0.0323 0.0314–0.0316 0.0314
3 0.0486 0.0487 0.0464, 0.0483 0.0474 0.0455–0.0483 0.0455
4 0.0645 0.0631 0.0632–0.0641 0.0607

The numerical details of the resonance positions seen in these figures are given in table 1.
Here the values of F (j)

s are computed using a grid �Fs = 0.0001 and defining F (j)
s to be the

value of Fs at which Pi(Fs) has a local maximum. If Pi > 0.99 for a range of fields, the range
is quoted and sometimes there is more than one clear maximum. For fixed Fµ and increasing
j, there are clear systematic differences between these two values. It is not known what causes
these differences; the breakdown of the perturbation expansion used to compute F(j)

s maybe
significant, but also the discussions in sections 4.2 and 6 show that the relation between the
values of F(j)

s and F (j)
s is far from simple.

The regular but not equally spaced series of four minima beyond the arrows, in figure 2,
have, at present, no dynamical explanation. Numerical evidence, however suggests that some
parts of this structure are caused by the field switch, with shorter switch times removing most
of the structure and longer times producing more, see figure 3: the duration of the centre part of
the envelope is irrelevant provided it is long enough, see section 5.

In figure 3, we show ionization curves for the same parameters used in the right panel of
figure 2, but with the envelopes 4-50-4 and 40-50-40.

For the shorter switch, 4-50-4, Pi ∼ 1 for Fs < 0.014 and Fs > 0.052 and there are local
maxima only at the j = 1 and 2 resonances where F (1)

s = 0.0158 and F (2)
s = 0.0315. For the
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longer switch, 40-50-40, the above two maxima persist, at the same field values, but now the
ionization curve shows a great deal of other structures, some of which are sensitive to the switch
time. We discuss other effects of the field switch in section 6.

3. Theory

In the situations of interest here, the field frequency � is small by comparison with the Kepler
frequency, so the scaled frequency �0 (equation (2)) is small; typically it varies between 0.04
and 0.11 for n0 between 32 and 45 for the 8.105 GHz cavity. Hence the variation of the field,
F(t), is slow by comparison with the electron orbital motion and an averaging approximation
may be used to remove one degree of freedom, but first it is necessary to choose the correct
representation.

The fields encountered here are sufficiently large to couple together many states of the
field-free atom and to ionize some of these states; therefore, useful theoretical descriptions of
the experimentally observed signal must include a mechanism for ionization and, ideally, should
use a representation in which coupling between bound states is relatively small.

In order to understand the magnitude of this problem and to motivate the following analysis,
we consider the static field ionization of the one-dimensional atom with the Hamiltonian

H1 = 1

2µ
p2 − e2

z
+ λ(t)Fz, z > 0,

where F is a constant and here λ increases monotonically from zero to unity over a time long
compared to a Kepler period. We denote the quasi-bound states of H1 by |nF 〉 when λ = 1. If
initially the atom is in the state |n0 0〉, there is no classical ionization provided F < Fcrit, where,
in scaled units, Fcrit = 210/(3π)4 � 0.1298 (Richards 1987) and complete ionization if F > Fcrit.
In quantum mechanics, tunnelling decreases this threshold by an amount that depends upon the
interaction time and the initial principal quantum number. For an excited 1d hydrogen atom
initially in state |nF 〉, the probability of remaining bound at time t can be deduced from the
relations derived by Richards (1987) and behaves approximately as

Pb(n, t) ∼ exp(−�t), n3� � 1

2π
exp

[
−2.58nc(n)

(
Fcrit − F

Fcrit

)]
, (F < Fcrit),

where for n > 20, c(n) � 1/(1 + 1.65n−1 + 173.1n−2 − 249.5n−3) is derived by a numerical fit
to the theory. This probability approaches a step function as n → ∞. For t = 2πn3, that is one
Kepler period, the probability Pb decreases from 0.9 to 0.1 as F increases over an interval γFcrit

where γ = 0.2, 0.1, 0.04 and 0.02 for n = 5, 10, 30 and 50, respectively.
For F < Fcrit the state |n0F 〉 can be approximated by a linear combination of the field-free

states; the matrix elements 〈n0 F |n 0〉 provide some idea of how many unperturbed states are
required to accurately describe the wave function in the presence of a strong field. This matrix
element is estimated by Richards et al (1989) where it is shown to be significant for n0 < n < m,
where m � n0(2F)−1/4 (� 1.5n0 for F = 0.1). Thus any realistic approximation using a basis of
unperturbed states requires about 2n0 states in a 1d system and about n0

2 states for each of the n

values of the azimuthal quantum number, m. The method used by Robicheaux et al (2002) avoids
these problems, but as n0 increases the number of grid points increases and the computational
time increases commensurately.
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The theory presented here minimizes coupling between basis states by describing the motion
in a basis that diagonalizes the static-field, or Stark, Hamiltonian

HS = 1

2µ
P2 − e2

r
+ Fz, F = constant (� 0). (3)

If |nF 〉 is a bound eigenstate of HS with energy En(F), then a basis that may be used to describe
the bound motion of the time-dependent Hamiltonian is obtained simply by replacing the constant
F by F(t); in this basis coupling between states is caused only by the rate of change F(t) and not
by its magnitude. For the examples of interest here, it will be seen that this coupling is, in scaled
units, O(�0Fµ), which is typically an order of magnitude smaller than the coupling between the
unperturbed states. This method was first used in the present context by Richards (1987) and
Richards et al (1989), where it was applied to the one-dimensional hydrogen atom and shown to
explain important features of the three-dimensional experimental results.

Because this approximation uses a bound-state basis, the continuum needs to be introduced
as an extra approximation, described later. In addition, the eigenfunctions 〈r|nF 〉 are not
conveniently represented by simple functions, consequently approximations to these are
necessary. Finally, since canonical transformations are easier to handle than their corresponding
quantal unitary transformations, it is easier to develop this approximation using classical
dynamics and to quantize the resulting Hamiltonian, rather than to tackle the quantum mechanics
directly.

3.1. The classical Stark effect

The first goal is to find a suitable approximation to the generating function, S(I, r, F), for the
canonical transformation to the angle–action variables of HS; we also need expressions for HS

and ∂S/∂F in terms of these variables. This is a relatively routine, but complicated, calculation
because it is necessary to expand to high orders in F . The main result of these calculations is
the adiabatic Hamiltonian, defined by equation (18) below, which forms the basis of further
approximations.

The theory starts with the Coulomb–Stark Hamiltonian (equation (3)), in which the force
on the electron is static and in the negative z-direction. This Hamiltonian is separable in the
parabolic coordinates; following Born (1960, section 35) we use the coordinates

x = ξη cos φ, y = ξη sin φ, z = 1
2(ξ

2 − η2), ξ � 0, η � 0,

sometimes named squared parabolic coordinates, giving

HS = 1

2µ(ξ2 + η2)

(
p2

ξ + p2
η +

ξ2 + η2

ξ2η2
p2

φ − 4µe2

)
+

1

2
F(ξ2 − η2) = E. (4)

In the following we assume F � 0 and E < 0. The Hamilton–Jacobi equation is

(
∂S

∂ξ

)2

+

(
∂S

∂η

)2

+

(
1

ξ2
+

1

η2

) (
∂S

∂φ

)2

+ µF(ξ4 − η4) − 4µe2 = 2µE(ξ2 + η2), (5)
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the general solution of which defines the generating function S(I, r, F) for the canonical
transformation to the required angle–action variables. This equation is separable; so S =
S1(ξ) + S2(η) + Imφ, where

S1(ξ) =
∫

dξ

ξ

(−µFξ6 − 2µ|E|ξ4 + 2α1µe2ξ2 − I2
m

)1/2
, (6)

S2(η) =
∫

dη

η

(
µFη6 − 2µ|E|η4 + 2α2µe2η2 − I2

m

)1/2
, (7)

where α1 and α2 are the dimensionless separation constants that satisfy α1 + α2 = 2, with α1 > 0
and α2 > 0. Motion in the ξ-direction can be bound or unbound whereas motion in the η-
direction is always bound. The bound motion is restricted to the regions 0 � ξ1 � ξ � ξ2 and
0 � η1 � η � η2, where ξ1 and η1 are zero only if Im = 0.

The action variables are defined by the integrals

I1 = 1

π

∫ ξ2

ξ1

dξ

ξ

(−µFξ6 − 2µ|E|ξ4 + 2α1µe2ξ2 − I2
m

)1/2
, (8)

I2 = 1

π

∫ η2

η1

dη

η

(
µFη6 − 2µ|E|η4 + 2α2µe2η2 − I2

m

)1/2
, (9)

and satisfy the relation I1 + I2 + |Im| = In and 0 � I1, 2 � In − |Im|. They are related to the usual
quantum numbers n1 and n2 by

Ik = (nk + 1/2) h̄ with n1 + n2 + |m| + 1 = n, 0 � nk � n − |m| − 1.

These equations relate (I1, I2) to (E, α1) and may be inverted to give E and α1 in terms of (I1, I2).
However, for F �= 0 the integrals cannot be evaluated in closed form. One method of inverting
these equations is to invert the series obtained by expanding as a power series in F . A method of
performing these calculations is outlined in the appendix; the resulting algebra is complicated
and performed using Maple. For reasons that will soon become apparent, we have computed
these series to O(F 17), but here quote lower-order expansions. The resulting perturbation series
for the energy is

E(I) = − µe4

2In
2 +

∞∑
k=1

Ek(I)Fk, In = I1 + I2 + |Im|, (10)

where

E1(I) = − 3

2

InIe

µe2
, E2(I) = − I4

n

16µ3e8
(17I2

n − 3I2
e − 9I2

m),

E3(I) = − 3I7
nIe

32µ5e14
(23I2

n − I2
e + 11I2

m),

E4(I) = − 3I10
n

1024µ7e20
[1829I4

n − 1134I2
mI2

n − 183I4
m + (602I2

n − 378I2
m)I2

e + 49I4
e ],
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E5(I) = − 3I13
n Ie

1024µ9e26
[10563I4

n + 772I2
nI

2
m + 725I4

m + (98I2
n + 220I2

m)I2
e − 21I4

e ],

E6(I) = − I16
n

8192µ11e32
[547262I6

n − 429903I4
nI

2
m − 16200I2

nI
4
m − 6951I6

m

+ (685152I4
n − 25470I2

mI2
n − 36450I4

m)I2
e + (390I2

n + 765I2
m)I4

e − 372I6
e ],

E7(I) = − 3I19
n Ie

32768µ13e38
[7071885I6

n − 1530561I4
nI

2
m + 94915I2

nI
4
m + 55937I6

m

+ (1502283I4
n + 21410I2

nI
2
m + 66115I4

m)I2
e + (1947I2

n − 6321I2
m)I4

e + 957I6
e ],

and Ie = I2 − I1; this last action variable is related to the electric quantum number, Ie = ne h̄,
though in some papers, for instance Bethe and Salpeter (1957), the electric quantum number
is defined to be n1 − n2, because coordinates are chosen such that the force on the electron is
in positive z-direction; the value of Ie is the projection of the Runge–Lenze vector along Oz.
Up to O(F 5) the above expansion agrees with the series given in Damburg and Kolosov (1983,
page 45), see also Silverstone (1978), as h̄ → 0. Note that the odd components E2k+1(I) have a
term linear in Ie; it will be shown that these components determine the resonance position. The
separation constant is, to O(F 3),

α1 = 2I1 + |Im|
In

+
1

4

I2
nF

µ2e6
(3I2

n − 3I2
e − I2

m) − 1

8

I5
nIeF

2

µ4e12
(I2

n − I2
e − 6I2

m)

+
1

128

I8
nF

3

µ6e18
[(171I2

n − 15I2
e )(I

2
n − I2

e ) − I2
m(82I2

n + 150I2
e + 25I2

m)] + O(F 4), (11)

with α2 = 2 − α1 = (2I2 + |Im|)/In + O(F).
The angle-variables corresponding to the action variables defined in equations (8) and (9)

are defined by θk = ∂S/∂Ik, k = 1, 2. It is shown in the appendix that the two angle variables
can be expressed in terms of relations

θ1 = ψ + P1(ψ) + Q1(χ), θ2 = χ + P2(ψ) + Q2(χ), (12)

where the two auxiliary angles (ψ, χ) are defined by the relations

ξ2 = 1
2

(
ξ2

2 + ξ2
1

) − 1
2

(
ξ2

2 − ξ2
1

)
cos ψ, η2 = 1

2

(
η2

2 + η2
1

) − 1
2

(
η2

2 − η2
1

)
cos χ, (13)

and where (Pk(x), Qk(x)) are odd, 2π-periodic functions with zero mean value; expressions for
these, accurate up to O(F), are given in the appendix (equation (A.10)). However, for reasons
discussed below, we require these functions only in the limit F = 0 and then we have

θ1 = ψ − σ1 sin ψ − σ2 sin χ, θ2 = χ − σ1 sin ψ − σ2 sin χ, (F = 0), (14)

where σk = √
Ik(Ik + |Im|)/In, k = 1, 2.

3.2. Dynamic Stark effect

When the field amplitude F varies with time, the function S(I, r, F(t)) generates a time-dependent
canonical transformation and the Hamiltonian becomes

K = E(I, F(t)) +
∂S

∂F

dF

dt
. (15)
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The first term of this is the Stark Hamiltonian, equation (10); the second term is more difficult
to find, but it is important because only this term mixes states. It is shown in the appendix that
the function ∂S/∂F can be expressed as a Fourier series of the following form:

∂S

∂F
=

∞∑
k=1

Ak sin kψ + Bk sin kχ, (16)

where the angles (ψ, χ) are defined in equation (13) and where the coefficients (Ak, Bk)

are functions of the action variables and F . It is important to note that there is no term
independent of both ψ and χ. In our applications, F(t) = λ(t)(Fs + Fµ cos �t) and λ̇/λ 	 �,
so that Ḟ � −λ�Fµ sin �t and since, in scaled units �, Fs and Fµ are numerically similar and
small, a second-order approximation is obtained by evaluating the derivative ∂S/∂F at F = 0,
which considerably simplifies the analysis. The following result is derived in the appendix,

∂S

∂F
= I4

n

2µ2e6
G, (F = 0),

where

G = (3I2 + I1 + 2|Im|)σ1 sin ψ − (3I1 + I2 + 2|Im|)σ2 sin χ − In

2

(
σ2

1 sin 2ψ − σ2
2 sin 2χ

)
.

It is more convenient to use new angle–action variables,

In = I1 + I2 + Im, θ1 = φn − φe,

Ie = I2 − I1, θ2 = φn + φe,

Im = Jm, θm = φn + φm, (17)

so, when F = 0, equation (14) gives 2φe = θ2 − θ1 = χ − ψ. This gives an approximation we
refer to as the adiabatic Hamiltonian,

K = E(I, F) +
I4
n

2µ2e6

dF

dt
G(In, I1, I2, ψ, χ), (18)

where E(I, F) is the Stark energy given in equation (10). The angles ψ and χ are not conjugate to
the action variables and to develop further approximations it is necessary to express all quantities
involving ψ and χ in terms of θ1 and θ2, using equations (14). This is most easily achieved by
expressing each function as a multiple Fourier series,

(
sin kψ

sin kχ

)
=

∞∑
s1=−∞

∞∑
s2=−∞

(
S(k)

s1s2

C(k)
s1s2

)
exp [−i (s1θ1 + s2θ2)] , k = 1, 2, (19)

where C(k)
s1 s2

= S(k)
s2 s1

and

S(k)
s1s2

=




i
k

2s
Js2(sσ2)[Js1+k(sσ1) + Js1−k(sσ1)], s = s1 + s2 �= 0,

± iσ2

4
, s = 0, s1 = ±1, k = 1,

0, otherwise.
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The adiabatic Hamiltonian (18) is useful because the coupling term is O(�0Fµ) rather than O(F)

as in the original Hamiltonian, and hence the resulting Schrödinger equation may be solved using
a far smaller basis.

Hamilton’s equations in the original representation are singular at r = 0 and this is dealt
with using a regularization method, see Szebehely (1967) for a general introduction and Rath and
Richards (1988) for an application to the perturbed hydrogen atom. The equivalent singularity in
the adiabatic Hamiltonian occurs when Im = 0 and σ1 + σ2 = 1 and this also needs to be removed.
For instance, the equation for ψ is ψ̇ = [ψ, K] and the right-hand side is proportional to 1/J ,
where J = In (1 − σ1 cos ψ − σ2 cos χ), which can be zero. A method of avoiding numerical
problems when J is small is to define a new time, τ, by the equation dt/dτ = J , to give the
equations of motion

dI1

dτ
= − Inκ

dF

dt
[(1 − σ2 cos χ)Gψ + σ1 cos ψGχ],

dI2

dτ
= − Inκ

dF

dt
[σ2 cos χGψ + (1 − σ1 cos ψ) cos ψGχ],

dψ

dτ
= In

∂K

∂I1
+

(
∂K

∂I2
− ∂K

∂I1

)
Inσ2 cos χ (20)

+ κ
dF

dt

(
2I1 + Im

2σ1In

sin ψ − 2I2 + Im

2σ2In

sin χ

)
Gχ,

dχ

dτ
= In

∂K

∂I2
+

(
∂K

∂I1
− ∂K

∂I2

)
Inσ1 cos ψ

− κ
dF

dt

(
2I1 + Im

2σ1In

sin ψ − 2I2 + Im

2σ2In

sin χ

)
Gψ,

where κ = I4
n/(2µ2e6) and In = I1 + I2 + |Im|. In figure 5 we compare ionization probabilities

computed using these equations and the original Hamiltonian, but first it is necessary to
reintroduce ionization into this approximation.

3.3. Ionization

The adiabatic Hamiltonian (equation (18)) does not allow for ionization because angle–action
variables exist only for bound orbits. Ionization therefore has to be included as an extra
approximation which is described here.

For static fields, each classical state, or torus, labelled by the actions (In, Ie, Im), has a critical
field Fcrit such that it exists only if 0 � F < Fcrit: the approximation to Fcrit given by Banks and
Leopold (1978) is used here. Note that if Im = 0, bound orbits exist for all F (Howard 1995),
but those orbits that exist for large F are so special that they do not affect the current problem.
Adiabatic invariance suggests that this behaviour persists for sufficiently slowly varying fields,
that is small-scaled frequencies. The extreme values of Fcrit occur when the atom is aligned along
the field, Im = 0; in scaled units min(Fcrit) � 0.13 for (Ie, Im) = (In, 0) and max(Fcrit) � 0.38
for (Ie, Im) = (−In, 0). The variation of Fcrit with Ie = I2 − I1, for various values of Im, is shown
in figure 4.

In the adiabatic limit, In and Ie are almost constant, so we may define the time-dependent
critical field Fcrit(t) = Fcrit(Ie(t), Im) and assume that ionization occurs at a time when the actual
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Figure 4. The scaled classical critical field Fcrit as a function of the scaled action
Ie = I2 − I1, for various Im.

field F(t) exceeds this. If F(t) changes sign, as it happens if Fµ > Fs, the quantization axis
changes direction and the relevant critical field is given by Fcrit(−Ie, −Im) (F < 0) and so the
combined ionization criterion is

F(t) > F
(+)
crit = Fcrit(Ie(t), Im) if F(t) > 0,

F(t) < − F
(−)
crit = −Fcrit(−Ie(t), −Im) if F(t) < 0.

(21)

This approximation is accurate when the field changes very little during one Kepler period, that
is �0 	 1, and then these criteria may be used to include ionization in the adiabatic equations
of motion (20).

A useful guide to the behaviour of the system is obtained by equating In(t) and Ie(t) to their
initial values. This gives two boundaries beyond which Pi = 1:

I : Fs > Fµ, Pi(Fs) = 1, if Fs > F +
crit(Ie, Im) − Fµ;

II : Fs < Fµ, Pi(Fs) = 1, if Fs < Fµ − F−
crit(Ie, Im) or Fs > F +

crit(Ie, Im) − Fµ,

where Ie = Ie(0) is the initial value of this action variable.
For the ionization curves shown in figure 5, Ie(0) = −0.6 and Im = 0 giving F +

crit = 0.219
and F−

crit = 0.142. Thus, since Fµ = 0.15, condition II gives Pi(Fs) = 1 if Fs < 0.008 or
Fs > 0.069: these boundaries are shown by the arrows in the figures and are consistent with
the calculations. Similar boundary-arrows are included in figures 2 and 3.

Non-adiabatic dynamics affect this simple picture in two ways: (i) they blur and slightly
shift the boundaries; and (ii) more important, isolated resonances produce large changes in Ie(t)

and can enhance ionization at particular combinations of (Fs, Fµ), other than those defined by I
and II above. These dynamical effects produce the peaks labelled j = 1–4 seen in figure 5.

In figure 5, we compare values of Pi computed using the original Hamiltonian (1) (shown by
the solid lines), and the adiabatic equations (20) (shown by the dashed lines). Here �0 = 0.0528
(n0 = 35), I2 = 0.2, Im = 0 and Fµ = 0.15 and the arrows denote the values of Fµ − F−

crit and
F +

crit − Fµ: in the left panel the field envelope is 4-50-4 and in the right panel it is 16-50-16.
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Figure 5. Comparison of ionization probabilities computed using exact dynamics
(—) and the adiabatic equation 21 (- - -) for two envelopes. See the text for the
explanation of the arrows, which point to the borders outside of which Pi = 1, in
the adiabatic limit.

These figures show broad agreement between the two calculations, but there are three marked
differences; consider the left panel of figure 5:

• The maxima j = 2, 3 and 4 are at different values of Fs. This is because only terms upto O(F 2)

were included in the expansion of E(I) (equation (10)) and is not an inherent inaccuracy of
the adiabatic approximation.

• The maximum j = 1 is not present in the adiabatic calculation because with the approximations
used, it disappears when Fs = �0/3 = 0.176 and Fµ = �0j

′
1k/3, k = 1, 2, . . ., where j′

jk are
the positive, real roots of J ′

j(x) = 0; with k = 3 this gives Fµ = 0.150. For the full Hamiltonian,
this resonance disappears at Fs � 0.0161 and Fµ � 0.147.

• The main difference is the shift in the shoulder near Fs = 0.01.

Apart from these differences, the agreement between the two approximations is good. The
same remarks apply to the right panel of figure 5 but now we see that the new maxima at
Fs � 0.039 and some of the structure at Fs � 0.07 are reproduced in the adiabatic approximation.
The adiabatic approximation also has a local minimum at Fs = 0.0025, not present in the ‘exact’
probabilities; however, similar behaviour is seen in the exact results for other parameter values,
see for instance the right panel of figure 3.

These results, and other comparisons that cannot be shown here, suggest that the adiabatic
Hamiltonian provides a good approximation to the true dynamics. This is important because, for
the principal quantum numbers used in the current experiments, the numerical solution of the
Schrödinger equation derived from this Hamiltonian is a feasible computational task, unlike that
derived from the exact Hamiltonian using either an unperturbed or a static-Stark basis. In the
quantal approximation, ionization is included by adding a complex component to the energies,
which may be computed semi-classically, as in Leopold and Richards (1991) and Sauer et al
(1992).
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3.4. Averaged equations of motion

The adiabatic Hamiltonian (18) can be simplified further by noting that the two natural frequencies
of the motion are quite different,

ωe = ∂K

∂Ie

= −3InF(t)

2µe2
+ O(F 2), ωn = ∂K

∂In

= µe4

In
3 − 3IeF(t)

2µe2
+ O(F 2),

and hence |ωe| 	 ωn � ωK; this means that the orbital elements of the Kepler ellipse change
relatively little during one Kepler period. Hence the first averaged approximation is obtained
by averaging over φn, which is most easily achieved by ignoring all terms containing φn =
(θ1 + θ2)/2 in the Fourier series (19). This gives

〈sin ψ〉 = − 1
2σ2 sin 2φe, 〈sin χ〉 = 1

2σ1 sin 2φe, 〈sin kψ〉 = 〈sin kχ〉 = 0, k � 2.

Substituting these mean values into the adiabatic Hamiltonian (18) gives the mean motion
Hamiltonian

Km = E(Ie, F(t)) − 1

4

In
3

µ2e6

dF

dt
A(Ie)B(Ie) sin 2φe, (22)

where

A(Ie)
2 = (In + |Im|)2 − I2

e and B(Ie)
2 = (In − |Im|)2 − I2

e .

In quantum mechanics, this approximation corresponds to ignoring all transitions between states
of different n-manifolds of the adiabatic basis.

Numerical integration of the equations of motion derived from (22) is not straightforward
because of the square root singularity of B(Ie) at Ie = ±(In − Im). It is best accomplished by
introducing the three-dimensional vector

Z = (B(Ie) cos 2φe, B(Ie) sin 2φe, Ie),

the components of which satisfy the commutation relations [Zi, Zj] = 2εijkZk and
|Z|2 =constant, and hence the vector Z moves on the surface of a sphere. The equations of
motion, Żk = [Zk, H], become

dZ1

dt
= − 2Z2

∂E

∂Z3
− κ

{
Z3A(Z3) − Z2

2A
′(Z3)

} dF

dt
,

dZ2

dt
= 2Z1

∂E

∂Z3
− κZ1Z2A

′(Z3)
dF

dt
,

dZ3

dt
= κZ1A(Z3)

dF

dt
, (23)

where κ = I3
n/(2µ2e6). These equations, and their quantal equivalents, are trivially solved

numerically and in a subsequent work are used to examine the quantum mechanics of the effects
described in this paper.
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3.5. The resonance Hamiltonian

The mean motion Hamiltonian (22) needs to be rearranged in order to extract a clear picture of the
dynamics. Observe that the odd terms in the series for the Stark energy (equation (10)) contain
components that are linear in Ie and that these terms produce a slow secular change in φe which
physically corresponds to a rotation of the angular momentum vector about the Runge–Lenze
vector. We shall see that the mean part of this motion determines the position of the resonances
and the oscillatory part causes these resonances to disappear at certain field ratios.

Denoting the linear terms of E(I) by EL(Ie, F ) and on setting µ = e = 1, we have, to O(F 5)

EL = − 3
2InIeF

(
1 +

I6
nF

2

16

(
23I2

n + 11I2
m

)
+

I12
n F 4

512
(10563I6

n + 772I2
nI

2
m + 725I4

m) + · · ·
)

.

The remaining part of the Hamiltonian, Ḟ∂S/∂F , has a different form (equation (16)), and does
not give rise to factors like IeF

k; this is important for the following analysis.
Using EL only in Hamilton’s equations, we find that φe(t) = φe(0) − 3Ing(t)/2, where

g(t) =
∫ t

0
dt

[
F +

I6
nF

3

16

(
23I2

n + 11I2
m

)
+

I12
n F 5

512
(10563I4

n + 772I2
nI

2
m + 725I4

m) + · · ·
]

. (24)

The series in this integral has a finite radius of convergence, Frc(Im), so it is important that
max(F ) < Frc. We have computed this series to O(F 17), and used these nine terms to estimate
Frc. By extrapolating the ratios of coefficients using Richardson’s extrapolation, we estimated
that Frc ∼ 0.17, 0.19 and 0.21 for Im = 0, 0.8 and 1, respectively. Using Padé approximants, we
obtain Frc ∼ 0.18, 0.20 and 0.22, respectively. This provides a guide to the range of fields for
which the following theory is valid.

Since the field amplitude, F(t), is periodic in t, the function g(t) can be written in the form
g(t) = gt + g̃(t), where g̃(t) is periodic with zero mean and g is the mean of EL over a field
period. With F(t) = Fs + Fµ cos �t this becomes

g = Fs + 1
16I

6
n16(23I2

n + 11I2
m)Fs(F

2
s + 3

2F
2
µ)

+ 1
512I

12
n (10563I4

n + 772I2
nI

2
m + 725I4

m)Fs(Fs
4 + 5F 2

s F 2
µ + 15

8 F 4
µ) + · · · . (25)

The periodic function g̃(t) can be expressed as the Fourier series

g̃(t) = Fµ

�

∞∑
k=1

g̃k sin k�t,

where

g̃1 = 1 + 3
16I

6
n

(
11I2

m + 23I2
n

) (
F 2

s + 1
4F

2
µ

)
+ O(F 4),

g̃2 = 3
64I

6
nFsFµ

(
11I2

m + 23I2
n

)
+ O(F 4), (26)

g̃3 = 1
192I

2
nF

2
µ

(
11I2

m + 23I2
n

)
+ O(F 4), g̃k = O(F 4), k � 4.

The dominant harmonic is g̃1: both g̃2 and g̃3 are O(F 2) and all higher harmonics are O(F 4) and
are neglected.

Resonances in the dynamics occur when the angular frequency, 3Ing/2, resonates with
the field frequency: the magnitude of the effect of any resonance depends upon the periodic
component of g(t), and principally upon g̃1.
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In order to see this, we change to a moving reference frame, in which φe(t) is
approximately stationary, by defining a new angle ψe = φe + 3Ing(t)/2 using the generating
function F2(p, φe) = (φe + 3Ing(t)/2) p, where (ψe, p) are the new conjugate variables. Since
g(t) is, by definition, independent of Ie we have p = Ie. In these variables, the Hamiltonian (22)
becomes

Km =
{
E(Ie, F(t)) − EL(Ie, F(t))

}
− 1

4

dF

dt
I3
nA(Ie)B(Ie) sin (2ψe − 3Ing(t)) . (27)

No further approximation has been made in deriving this Hamiltonian from Km defined in
equation (22). By definition, the set of curly brackets contains terms quadratic and higher in Ie

which are independent of ψe; the leading term is

E(Ie, F ) − EL(Ie, F ) = 3
16I

4
nI

2
e F(t)2,

and since Ḟ = −Fµ� sin �t, we see that the terms of Km are O(F 2) and O(F�), and since
� ∼ F ∼ 0.1 (in scaled units) the mean motion of (ψe, Ie) is slow by comparison with the field
oscillations: hence the relatively high frequency oscillations of E − EL do not qualitatively affect
the motion—a fact that has been confirmed numerically—and hence we may replace E − EL by
its mean over a field period. Retaining only the dominant quadratic term gives

Km = 3
16

(
F 2

s + 1
2F

2
µ

)
I4
nI

2
e + 1

4I
3
nFµ�A(Ie)B(Ie) sin �t sin (2ψe − 3Ing(t)) .

The second term is, for most values of �, Fµ and Fs, an oscillatory function of time with small
mean value: in these circumstances it has little effect and may be ignored so that Km ∼ I2

e ,
giving Ie(t) ∼ constant with ψe approximately proportional to t. However, for any given (�, Fµ)

there are particular resonant values of Fs for which the long-time average of the second term
is proportional to sin 2ψe and then the nature of the resonant motion is qualitatively different.
Near these values of Fs, Ie(t) can vary over a large portion of its accessible range and in some
circumstances this leads to enhanced ionization.

The function g̃(t) is periodic and odd, so we may write

sin (2ψe − 3Ing(t)) =
∞∑

k=−∞
Jk sin (2ψe − νkt + kπ) , νk = 3Ing − k�, (28)

where the Fourier coefficients, Jk, depend upon g̃s, s � 1. The coefficient Jk is dominated by
g̃1 = 1 + O(F 2), but g̃2 and g̃3 are also O(F 2), and to this order

Jk = Jk(z1)J0(z2)J0(z3) + J0(z2)

∞∑
s=1

Js(z3)[Jk−3s(z1) + (−1)sJk+3s(z1)]

+ J0(z3)

∞∑
s=1

Js(z2)[Jk−2s(z1) + (−1)sJk+2s(z1)]

+
∞∑
s=1

Js(z2)

∞∑
r=1

Jr(z3)[Jk−2s−3r(z1) + (−1)rJk−2s+3r(z1)

+ (−1)sJk+2s−3r(z1) + (−1)s+rJk+2s+3r(z1)], (29)

where zk = 3g̃kInFµ/�.
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Using equation (28) the mean-motion Hamiltonian becomes,

Km = 3I4
n

16

(
F 2

s +
1

2
F 2

µ

)
I2
e +

1

4
I3
n�FµA(Ie)B(Ie)

∞∑
k=−∞

J̃k cos(2ψe − νkt + kπ), (30)

where the functions A(Ie) and B(Ie) are defined after equation (22) and J̃j = (Jj−1 − Jj+1)/2,
so that, to the lowest order, J̃j = J ′

j(3Fµ/�0).
If |νj| is small, the jth term of the sum changes more slowly than all other terms, which

may therefore be averaged out to give the resonance Hamiltonian,

KR = 3
16I

4
n

(
F 2

s + 1
2F

2
µ

)
I2
e + 1

4I
3
n�FµA(Ie)B(Ie)J̃j cos(2ψe − νjt + jπ).

We define the jth dynamical resonance to be at the static field, F(j)
s , where νj = 0, that is where

coupling between Ie-states is largest: the equation for F(j)
s is

3g(Fs, Fµ, Im)In = j� (31)

or to lowest order, in scaled units, F(j)
s � j�0/3, j = 1, 2, · · ·. We show below that near this

value of Fs ionization may be enhanced, but in section 6, it is shown that there is no clearly
defined, precise relation between F(j)

s and F (j)
s , the position of the maximum in the ionization

probability seen in figures 1 and 2; the two fields are close but the difference can be larger than
the resonance width, see section 4.2, in particular table 2.

The position of the jth resonance, F(j)
s , is, to a first approximation, independent of the

substate quantum numbers; if one substate is ionized by this resonance, others will be similarly
affected so the effect of the resonance is not significantly changed by an average over substates.

The transformation θ = ψe − νjt/2 + jπ/2 converts the resonance Hamiltonian into the
conservative system,

KR = 3
16I

4
n

(
F 2

s + 1
2F

2
s

)
(Ie − αj)

2 + 1
4I

3
n�FµA(Ie)B(Ie)J̃j cos 2θ, (32)

where

αj = 4(3g − j�0)

3
(
F 2

s + 1
2F

2
s

) � 4(3Fs − j�0)

3(F 2
s + 1

2F
2
s )

(in scaled units).

The Hamiltonian KR shows that the jth resonance disappears when J̃j = 0: to the lowest order
this gives, in scaled units

F(j)
s = 1

3j�0 and Fµ
(j,k) = 1

3j
′
jk�0, k = 1, 2, . . . , (33)

where j′
j k is the kth positive zero of J ′

j(x). This critical value of Fµ was first derived in a linear
quantal approximation (Galvez et al 2000) and later by Oks and Uzer (2000) using a Floquet
approximation and by Ostrovsky and Horsdal-Pedersen (2003) using a linear approximation.
Recent experiments (Schultz 2003, Shultz et al 2005) and comparisons with classical calculations
suggest that this estimate can be inaccurate by up to 10%. Later we show that the present theory
can be used to improve upon these estimates.
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The derivation of the resonance position (31) and the resonance Hamiltonian (32) involves
a series of approximations. Before proceeding it is helpful to discuss the effect of ignored terms,
listed below.

1. We have used the Stark angle–action variables, defined by HS (equation (3)). For the action
variables, we use a series representation in F . For the angle variables, we use the F = 0 limit
because these variables appear in the Hamiltonian K (equation (15)), only in the term which
is O(�0Fµ).

2. The term ∂S/∂F (equation (16)), has zero mean value when averaged over (ψ, χ) and because
it is multiplied by the factor �0Fµ, we may approximate it by its value at F = 0.

3. The mean motion Hamiltonian, Km (equation (22)), is derived by averaging over φn =
(θ1 + θ2)/2, which replaces sin kψ and sin kχ by Fourier series in sin 2φe. The approximations
described in points 1 and 2 truncate this series at the first term and approximate its coefficient
to second order.

The inclusion of higher-order terms in the mean-motion Hamiltonian (22) introduces
corrections O(�FµF ) to the factor �FµA(Ie)B(Ie) and adds further terms corresponding to
the harmonics sin 2pφe, p = 2, 3, . . .. Crucially, this means that the estimate, νj = 0, of the
j resonance position is not affected by the approximations made: that is, the position of the
dynamical resonance is determined solely by the parts of the Stark Hamiltonian, E(I) (equation
(10)), which are linear in Ie.

A better estimate of F(j)
s is therefore obtained using the series (25), which has been evaluated,

using computer-assisted algebra, to O(F 17). In section 4.2 we use this to obtain better estimates
of F(j)

s and the values of Fµ at which the resonances disappear.

4. Resonant ionization

4.1. Qualitative discussion

Here we show how the dynamical resonance described in the previous section can enhance
ionization. The connection is qualitative, but explains many features of the ionization probability.

The Hamiltonian KR (equation (32)) is similar to that of a vertical pendulum, but there
are two significant differences. First, Ie is confined to the region |Ie| � In − |Im| with natural
boundaries at Ie = ±(In − |Im|), where B(Ie) = 0, see equation (22). Second, the coefficient of
cos 2θ depends upon Ie. The fixed points of KR are at the roots of ∂KR/∂Ie = ∂KR/∂θ = 0, and
for this analysis it is convenient to replace J̃j by |J̃j|; when J̃j < 0 this represents a physically
unimportant translation in θ. The equation ∂KR/∂θ = 0 gives, for 0 � θ < π, θ = 0 and π/2. At
θ = π/2, the equation ∂KR/∂Ie = 0 has a single root near Ie = αj and this fixed point is a centre.
At θ = 0 there are generally three roots: a saddle near Ie = αj, but there are two others near
Ie = ±(In − |Im|), because of the square-root singularity in A(Ie). If the (θ, Ie) phase plane is
projected onto a sphere with latitude ψ, so Ie = (In − |Im|) cos ψ, it is seen that there are phase
curves with centres close to, but not at, the poles and which enclose the poles: in the Cartesian
coordinate system (θ, Ie) this produces the two extra fixed points. The physically significant fixed
points are near Ie = αj and these exist only if |αj| < In − |Im|, approximately.

By plotting the contours of KR for fixed Fµ and � and with Fs increasing so that αj increases
from below −(In − |Im|) to above In − |Im|, we can see how the resonance develops and why,
in certain circumstances, ionization is enhanced if Fs � F(j)

s .
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Figures 6–10 show the contours of KR, near the j = 1 resonance for Im = 0.2, �0 = 0.0528
and Fµ = 0.13, corresponding to figure 2. For these graphs we use KR with g̃1 and g given by
equations (27) and (25) (to O(F 5)) respectively, which give ν1 = 0 when Fs

(1) = 0.0168. In
each figure Fs and Fµ are fixed so, according to the adiabatic ionization criterion, there is a
critical value of Ie, above which orbits ionize, given by the solution of Fcrit(Ie, Im) = Fs + Fµ:
for the parameters used here the critical value of Ie changes from Ie = 0.50 (Fs = 0.0152)
to Ie = 0.42 (Fs = 0.0183). The maximum of Fcrit(Ie, Im) is at Ie = 1 − |Im|, and hence if
Fs + Fµ < Fcrit(1 − |Im|, Im) there is no ionization, even at a resonance. The upper solid
horizontal line in each figure is at the value of Ie at which Fcrit(Ie, 0.2) = Fs + Fµ, so orbits
straying above this line will ionize. The lower solid line Ie = −0.4 is taken, for illustrative
purposes, to be the initial state. Note that in this case Fµ − Fs < 0.13, so the other adiabatic
boundary defined in equation (21) does not lead to ionization.

As Fs increases from 0.0152 to 0.0183, through F(1)
s = 0.0168, the centre of the resonance

island moves upwards. The physical effect of this is understood by considering a field suddenly
switched on, with the initial value of φe uniform in (0, 2π) and the initial value of Ie to be −0.04.
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Figure 6. α1 = −0.75 and
Fs = 0.0152.
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Figure 7. α1 = −0.25 and
Fs = 0.0163.

–0.5

0

0.5

0.5 1

Ie

θ/π

Figure 8. α1 = 0 and Fs =
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Figure 10. α1 = 0.75 and
Fs = 0.0183.
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• Figure 6: Fs = 0.0152 (α1 = −0.75). The adiabatic condition shows that orbits for which
Ie(t) > 0.50 ionize; at this field there is no resonance island and no ionization from the initial
state.

• Figure 7: Fs = 0.0163 (α1 = −0.25). The resonance island exists; it intersects the initial state,
but does not overlap the ionizing region, so there is no ionization. In practice, the demarcation
between ionizing and non-ionizing regions is less sharp because the averaging approximations
used to derive this simple picture replaces unstable manifolds by separatrixes.

• Figure 8: Fs = F(1)
s = 0.0168 (α1 = 0). The resonance island is in the centre of the phase space.

The ionization criterion is practically the same as in figure 6 and so orbits with Ie(t) > 0.50
ionize. Now, however, the resonance island can transport initial states to the ionizing region,
Ie > 0.46. Note that not all orbits trapped in the resonance island will ionize, but only those
near the separatrix. We shall see in section 5 how this affects the ionization times.

• Figure 9: Fs = 0.0173 (α1 = 0.25). The centre of the island is now at Ie = 0.2 and its separatrix
just dips below the initial state, so few orbits ionize. In these circumstances, it is shown in
section 6 that the ionization probability can be affected significantly by the way the field is
switched on.

• Figure 10: Fs = 0.0183 (α1 = 0.75). As for figure 6, the island no longer exists and there is
no ionization from the initial state.

This qualitative description of the ionization process suggests that for a microcanonical
distribution of substates, the background ionization increases as Fs increases across a resonance,
because Ic

e decreases, as shown in figure 14.
The centre of the jth resonance island is at approximately (equation (32))

Ie � αj = 4(3Fs − j�0)

3(F 2
s + 1

2F
2
s )

(in scaled units),

so it exists only for Fs in the interval

1
3j�0 − β < Fs < 1

3j�0 + β and β = 1
36j

2�2
0 + 1

8F
2
s . (34)

In this field range, a proportion of initial values of Ie(0) may lead to ionization: outside this
interval the resonance does not exist.

This qualitative description of the ionization mechanism shows that for a system initially
in a given Im-substate, there are several conditions necessary for a resonance to enhance the
ionization probability.

1. The field amplitudes must be sufficiently large such that there is ionization for some value of
Ie, for a given Im.

2. The field amplitudes must not be so large that Pi = 1.

3. If Fcrit(I
c
e , Im) = Fs + Fµ, then the island width must exceed Ic

e − Ie(0), otherwise the initial
state cannot be transported to an ionizing state. There is, of course, a similar relation for the
boundary defined by Fcrit(−Ic

e , −Im) = Fµ − Fs when Fµ > Fs.

The first two of these conditions define a region in the (Fs, Fµ)-plane in which the resonance may
enhance ionization. The boundaries of this region depend upon Im and are the complement of the
region defined by the two conditions Pi = 0 and Pi = 1 for all Ie. Using the adiabatic assumption,
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Pi = 1 if Fs + Fµ > max(Fcrit) and Pi = 0 if Fs + Fµ < min(Fcrit) and Fµ − Fs < min(Fcrit), if
Fs < Fµ (see equation (21)). In the case Im = 0.1, this region is shown by the shaded area in
figure 11: outside this region the resonance can have no effect. If |Im| > 0.1, the equivalent region
lies inside the area shown.
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Figure 11. Diagram showing the regions where Pi = 0 and Pi = 1 for Im = 0.1.
In the shaded area 0 < Pi < 1: only in this region are the resonances potentially
visible.

Inside the shaded region, a resonance affects the ionization probability only if condition 3
above is satisfied. Below, but near the upper boundary, Pi ∼ 1, so resonance peaks are barely
noticeable; see, for instance, the j = 5 resonance in figure 1 near Fs = 0.148. The breakdown
of adiabatic invariance broadens these boundaries but in a manner difficult to estimate, although
the effect increases as �0 increases; tunnelling also affects these boundaries.

There are three parameters of the resonant island that affect Pi(Fs). These are most easily
estimated by setting Fs = F(j)

s , so αj = 0, and Im = 0 as well as using the lowest-order estimates
of all variables: these values are used in the remainder of this section.

The first parameter is the island area, Aj, which determines how the classical resonance
affects the quantum dynamics. An estimate for this is,

Aj

2π
= 2In

π
sin−1

√
8�0Fµ|J ′

j|
3(F 2

s + 1
2F

2
s ) + 4�0Fµ|J ′

j|
, J ′

j = J ′
j(jFµ/Fs), Fs = F(j)

s .

For other values of Im and αj, the form of the resonance Hamiltonian shows that Aj is proportional

to
√

|J ′
j|. For the parameters of figure 1, �0 = 0.098 and Fµ = 0.1, this gives Aj/2π =

(0.80, 0.05, 0.35, 0.25)In for j = 1–4. In this case, n0 = 43 and hence the approximate number
of states associated with these islands are 34, 2, 15 and 11, respectively. Thus, if n0 is decreased,
all other scaled variables remaining the same, we should expect, in quantum dynamics, the j = 2
resonance to become less prominent than the other resonances.

The second parameter is the island width, �Ie, that is the maximum distance between
the two branches of the separatrix. It is difficult to derive a simple estimate of �Ie; here we
simply note that it is proportional to |J ′

j|, as defined above. A necessary condition for enhanced
ionization is that �Ie is larger than Ic

e − Ie(0); otherwise transport to ionizing regions does not
occur. Notice that this condition is independent of the principal quantum number, n, unlike that
discussed above.
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The third important classical parameter is the period of the mean motion inside the island; as
we shall see, this determines how rapidly a resonance develops (section 5) and how it is affected
by the field envelope (section 6). The frequency, ωj, of the motion inside the resonance island is
approximated by expanding the resonance Hamiltonian (equation (32)) about its centre and near
the island centre we obtain, in scaled units

ω2
j = 3

8

(
F 2

s +
1

2
F 2

s

)
�0Fµ

∣∣∣∣J ′
j

(
jFµ

Fs

)∣∣∣∣ and Fs = 1

3
j�0. (35)

This estimate gives the largest value of the frequency in the island; for motion near the separatrix
ωj is smaller.

In this section we have shown how a dynamical resonance can enhance the ionization
probability and have derived some approximate necessary conditions. The analysis uses the
resonance Hamiltonian, KR (equation (32)), derived using two stages of averaging. An important
part of this Hamiltonian is the factor J̃j, which, for small �0, oscillates between its maximum
and minimum values for relatively small changes in Fµ. Hence, whilst KR provides a good
qualitative description, for any fixed (�0, Fµ), the details may be wrong; for instance the field
at which a resonance disappears is given inaccurately by this approximation if �0 is small.

4.2. Resonance positions

In this section we examine ionization from a particular substate and compare theoretical
predictions with exact numerical calculations. We choose the low frequency �0 = 0.011414
(n0 = 21) (to minimize non-adiabatic effects), fix Im = 0.2, use the initial condition Ie = −0.4
(so there is no average over substates) and put Fµ = 0.13.

Since Ie is an approximate constant of the motion and Fcrit(−0.4, 0.2) = 0.1984 and if the
dynamics were adiabatic, we should expect complete ionization when Fs exceeds Fcrit − Fµ =
0.0684 and no ionization for smaller static fields. At a resonance, Ie(t) varies over part of its
accessible range and since min(Fcrit) = 0.1357, we might see the effect of the jth resonance if
F(j)

s � 0.0057, provided the size of the resonance island is sufficiently large. This simple analysis
suggests that the resonances 2 � j � 18 could be seen via ionization: in practice, for reasons to
be discussed later, the j = 2, . . . , 6, 11 and 14 resonances are not observed.
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Figure 12. Ionization curve for �0 = 0.011414 (n0 = 21), Fµ = 0.13, with
initial conditions I2 = 0.2 and Im = 0.2.
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In figure 12 we show the classical ionization probabilities for the envelope 16-50-16, in
which the j = 7–10, 12, 13 and 15–19 resonances are clearly visible, but the j = 6, 11 and
14, marked by the arrows, are missing: other calculations show that the j = 5 resonance is also
missing and theory suggests that the j = 2–4 resonance islands are too narrow to affect the
ionization probability, that is �Ie < Ic

e − Ie(0), as discussed in the previous section.
In table 2 some parameters associated with the j = 7–15 resonances are listed. Here the

resonance width, �F(j)
s , is defined to be the difference Fs

+ − Fs
−, where Fs

± are respectively
the smallest and largest values of Fs on either side of F (j)

s at which Pi = 0. Notice that this width
is generally less than the difference |F(j)

s − F (j)
s |. In these calculations 500 orbits were used.

The values of F (j)
s , the static field at which Pi is largest, are computed using a 10−5 grid in Fs,

and F (j)
s is taken to be at the maximum value of Pi on this grid. The value of F(j)

s is the root of
g(Fs, Fµ) = j�0/3: for j = 12–15 F(j)

s + Fµ > Frc, the approximate radius of convergence of
the series for g (see equation (24)).

The function g(Fs, Fµ) is known only via its series expansion (equation (25)), which has
been computed to O(F 17), that is the first nine terms. From the discussion after equation (24),
since max(F ) = Fs + Fµ, we expect any theory based on the series representation of g to be
valid for those resonances satisfying F(j)

s + Fµ < 0.18 (Im = 0) and 0.22 (Im = 1).
It transpires that if F is near the upper boundary, the values of F(j)

s are sensitive to the
number of terms in the series for g and extrapolation is necessary to estimate converged values.
Here we consider two methods of extrapolation and give reasons which suggest that the Padé
approximant is more reliable. All the following results are obtained by substituting Fµ = 0.13
and Im = 0.2 into the series for g and then manipulating the resultant power series in Fs: for
completeness we give this series as

g(Fs)

Fs

= 1.057 + 0.08759x + 0.1079x2 + 0.1073x3 + 0.05903x4 + 0.01588x5

+ 0.001861x6 + 7.700 × 10−5x7 + 6.509 × 10−7x8, x = (10Fs)
2. (36)

For the j = 7 resonance, the lowest-order approximation gives F(7)
s � 7�0/3 = 0.02663, which

is about 7% too large. Eight other estimates can be obtained by truncating the series for
g(Fs)/Fs at Fs

2k, k = 1, 2, . . . , 8: these are 0.02566, 0.02536, 0.02522, 0.02515, 0.02511,
0.02509, 0.02507 and 0.02506. This sequence appears to be converging, but has not reached
its limit (to the four significant figures quoted). Suppose we have M estimates Fp for F(j)

s , using
p = 1, 2, . . . , M terms of the series (36), then using the method of Richardson we assume that
Fp = F(j)

s +
∑M−1

r=1 Arp
−r. These M equations may be solved for the unknown F(j)

s to give the
estimate F(7)

s � 0.02505, which differs from F (j)
s (= 0.02495) by 10−4. Despite this relatively

small inaccuracy, we note that a Monte Carlo calculation (with 500 orbits) gives Pi(0.02505) =
0, with Pi(Fs) �= 0 in the interval 0.02495 ± 5 × 10−5, which does not overlap with our
estimate of F(7)

s .
Another approach is to form a Padé approximant of g(Fs)/Fs using the expression (36),

treated as an eighth degree polynomial in F 2
s . The coefficients, and hence the positions of

the poles, of these approximants depend upon Im and Fµ: we find that the position of the
pole nearest to the origin is relatively insensitive to Im, but changes significantly with Fµ.
Therefore for Fµ < 0.09 we use a [2/2] approximant (in F 2

s ) and for Fµ � 0.09 we use a [3/3]
approximant.
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For the case considered here, Fµ = 0.13, Im = 0.2, the relevant Padé is

g(Fs)

Fs

= 1.057 − 9.542x + 64.89x2 − 156.4x3

1 − 9.858x + 59.36x2 − 198.0x3
, x = (10Fs)

2. (37)

With this approximation for g(Fs), the equation 3g = j�0 gives the values of F(j)
s quoted in

table 2.

Table 2. Positions, heights and widths of the resonances shown in figure 12. For
completeness, the values of F(j)

s are 0.00360, 0.00720, 0.01079, 0.01438, 0.01795
and 0.2151, for j = 1–6, respectively.

F (j)
s

Monte Carlo Padé Width
j estimate approximate Pi(F (j)

s ) �Fs

7 0.02495 0.02506 0.38 10 × 10−5

8 0.02841 0.02859 0.27 7 × 10−5

9 0.03194 0.03209 0.42 11 × 10−5

10 0.03544 0.03556 0.68 31 × 10−5

11 – 0.03900 0 < 10−5

12 0.04235 0.04240 0.73 32 × 10−5

13 0.04581 0.04576 0.73 46 × 10−5

14 – 0.04906 0 < 10−5

15 0.05269 0.05229 0.94 77 × 10−5

For the j = 15 resonance, the zero-order approximation to F(15)
s is 0.0571, which is

about 8% too large. The eight other estimates, obtained using the truncated series for g(Fs)

(equation (36)), are 0.05479, 0.05395, 0.05347, 0.05313, 0.05287, 0.05265, 0.05246 and 0.05229.
Richardson’s extrapolation gives F(15)

s = 0.04858, which is 8% smaller than F (j)
s (= 0.05265),

and no improvement on the zero-order approximation. The [3/3] Padé approximant (equation
(37)) gives F(15)

s = 0.05229, approximately 0.7% smaller than F (j)
s . In this case, the Padé

approximant seems to provide a more reliable method of extrapolating the truncated series for
g(Fs). We note that this resonance field is on the edge of the validity of the series expansion, so
any estimate of F(15)

s based on the series may not be accurate; in these circumstances, however,
the Padé approximant is more likely to provide an accurate estimate of the exact function. In all
future estimates of F(j)

s , we therefore use the Padé approximant.
We now turn our attention to the resonances missing from figure 12. For this analysis we

use the resonance Hamiltonian used to plot the contours in figures 6–10 which, for the reasons
discussed at the end of the previous section, provides only a qualitative description.

Using the simple approximations for g and g̃1 (equations (25) and (27)), we find that the
width of the resonance island is proportional to

A(j) = J ′
j

(
3Fµ

�0
g̃1(F

(j)
s , Fµ)

)
, where g(F(j)

s , Fµ) = 1

3
j�0. (38)

An overview of the widths of the j = 2–15 resonances is given by the graph of this function with
j taking real values. This graph is shown in figure 13, with integer values of j being marked by
the circles.

New Journal of Physics 7 (2005) 138 (http://www.njp.org/)

http://www.njp.org/


28 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

2 4 6 8 10 12 14 16 18

-0.1

-0.05

0

0.05

0.1

j

A(j)

Figure 13. Graph of the function A(j) for Fµ = 0.13, �0 = 0.011414 and
Im = 0.2.

We relate this graph to the ionization curve in figure 12 by recalling that a dynamical
resonance affects the ionization probability only if it can transport an orbit to a region Ie > Ic

e ,
where Ic

e is defined by Fcrit(I
c
e , Im) = Fµ + F(j)

s , so the resonance island width must exceed the
difference Ic

e − Ie(0).
The values of Ic

e (F
(j)
s ) decrease with increasing j; for j = 2, Ic

e = 0.75 and for j = 5,
Ic
e = 0.43, but for these cases the maximum possible size of the resonance island is smaller than

Ic
e − Ie(0). For j = 6, 11 and 14, the resonance island is seen from figure 13 to be very small,

so these resonances do not affect the ionization probability.
For j = 7–10, the simple Hamiltonian with contours shown in figures 6–10 suggests that

the resonance island is slightly too small for enhanced ionization. But non-adiabatic effects,
the approximations used and the field envelope will broaden these boundaries. The j = 11 and
14 resonance islands are predicted to be too small to promote ionization, whereas this simple
approximation predicts enhanced ionization for all other j values.

4.3. Resonance disappearance

The jth resonance has no effect on the dynamics at those values of Fµ where Jj = 0 (see equation
(32)). With g(Fs, Fµ) approximated by a Padé approximant, as in equation (36), the equation
g = j�0/3 provides an expression for F(j)

s (Fµ) and then equation (29) can be used to obtain the
numerical value of F(j,k)

µ , associated with j′
j k. In table 3, we give values of F(j)

s and F(j,k)
µ , nearest

0.13, at the j = 5–15 resonances for �0 = 0.011414. In this example, the difference between
F(j,k+1)

µ and F(j,k)
µ is about 0.01. Observe that for j = 6, 11 and 14, F(j,k)

µ � 0.13 and that for
j = 8 it is close to 0.13 and at this resonance max(Pi) is relatively small.

Table 3. The nearest value of F(j)
s and F(j,k)

µ , where Fµ = 0.13, at which each
resonance shown in figure 12 disappears.

j 6 7 8 9 10 11 12 13 14 15

F
(j)
s 0.0215 0.0249 0.0287 0.0319 0.0358 0.0390 0.0420 0.0460 0.0489 0.0515

Fµ
(j,k) 0.130 0.135 0.128 0.133 0.126 0.130 0.135 0.127 0.131 0.136

In the experimental results reported by Galvez et al (2000), it was shown that resonances
disappear at certain field values (F (j)

s , F (j,k)
µ ), given approximately by equation (33). Since
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then two sets of more accurate measurements have been made. Firstly, disappearances in the
8.105 GHz cavity, with scaled frequencies mostly in the range 0.0731 � �0 � 0.136, are reported
by Galvez et al (2005). Secondly, Schlultz (2003) has reported results for a cavity with frequency
3.5539 GHz, and scaled frequencies in the range 0.035 < �0 < 0.16, see also Schultz et al
(2005). In those papers experimental values of (F (j)

s , F (j,k)
µ ) are compared with classical Monte

Carlo estimates: here we compare some of these with theoretical values.
With the Monte Carlo method, it is not feasible to compute the exact values of (F (j)

s , F (j,k)
µ ),

so we determine an interval for each of Fs and Fµ in which the resonance cannot be distinguished
from the statistical fluctuations. The midpoint of this rectangle is taken to be the point of
disappearance.

For the 29 cases considered by Schultz (2003) the relative difference between the
experimental and computed values of F (j)

s is less than 1% for 22 cases and between 1 and
2% in five cases: for F(j,k)

µ , the corresponding number of cases are 11 and 16 respectively. For
a comparison with theory, we compute (F (j)

s , F (j,k)
µ ) for Im between 0 and 1 and compare the

average with the experimental values of (F (j)
s , F (j,k)

µ ). Of the 32 cases considered, the relative
difference between F(j)

s and F (j)
s is less than 1% for 18 cases and between 1 and 2% in 10 cases:

for F(j,k)
µ , the corresponding numbers are 24 and 6 respectively.
Some typical comparisons between the Monte Carlo calculations and the theoretical values,

for various scaled frequencies, are shown in table 4.

Table 4. Comparison of the theoretical values of (F (j)
s , F (k,j)

µ ) and the Monte
Carlo estimates of (F (j)

s , F (j,k)
µ ) for various scaled frequencies and values of j. In

the extreme right column is F (j)
s + F(k,j)

µ (recall that this theory will be unreliable
if this value exceeds 0.19).

F (j)
s F

(j)
s F

(k,j)
µ F

(k,j)
µ

�0 j MC Theory MC Theory F (j)
s + F

(k,j)
µ

0.0367 1 0.0115 0.0113 0.139 0.140 0.14
0.0789 1 0.0242 0.0244 0.134 0.137 0.16
0.0980 2 0.0623 0.0626 0.0949 0.0962 0.16
0.136 2 0.0832 0.0778 0.127 0.131 0.21
0.0789 3 0.0740 0.0739 0.104 0.105 0.18
0.0731 4 0.0895 0.0852 0.120 0.121 0.21
0.0789 4 0.0957 0.0868 0.128 0.130 0.22

4.4. Variation of resonance position with Im

Now consider the variation of F(j)
s with Im. From the series for g(F) (equation (25)), we see

that F(j)
s decreases as Im increases, but that the difference between the largest and smallest

values is approximately 11j�0[9F 2
s + (j�0)

2]/432: for the data in table 2 this gives 4.4j × 10−5

approximately. The results obtained using the Padé approximant for g are given in table 5.
Columns 2–4 show the mean 〈F(j)

s 〉, averaged over Im, and the minimum and maximum values
of F(j)

s , for Fµ = 0.13 and �0 = 0.0114.
These data show that, for this low frequency, the above simple estimate of the spread is

reasonable for j � 10, and that it is comparable with the difference between the F (j)
s and F(j)

s ,
given in columns 2 and 3 of table 2 and to the resonance width, column 5. Note also that as j
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Table 5. Table of the theoretical resonance positions for the parameters defined
in table 2, Fµ = 0.13 and �0 = 0.0114. In column 5 is the difference between
the largest and smallest values of F(j)

s .

min(F
(j)
s ) max(F

(j)
s ) Spread

j 〈F(j)
s 〉 Im = 1 Im = 0 δF(j)

5 0.01788 0.01771 0.01796 25 × 10−5

6 0.02143 0.02123 0.02153 29 × 10−5

7 0.02496 0.02475 0.02507 33 × 10−5

8 0.02848 0.02825 0.02860 35 × 10−5

9 0.03198 0.03173 0.03210 37 × 10−5

10 0.03545 0.03520 0.03558 38 × 10−5

11 0.03890 0.03864 0.03902 39 × 10−5

12 0.04231 0.04207 0.04241 34 × 10−5

13 0.04568 0.04547 0.04576 29 × 10−5

14 0.04901 0.04884 0.04906 22 × 10−5

15 0.05228 0.05218 0.05229 13 × 10−5

increases, and F(j)
s + Fµ tends towards the radius of convergence of the series for g, the difference

decreases: it is not known if this effect is real or due to the approximations used.
Although the position of the dynamical resonance is very weakly dependent upon Im, its

effect on Pi(Fs) can depend strongly upon Im, because Ic
e —that is the solution of Fcrit(I

c
e , Im) =

Fµ + F(j)
s —depends upon Im: for instance with j = 10, Ic

e varies from 0.04 (Im = 0) to 0.3
(Im = 1), so variations in Im can eliminate the effect of a resonance.

4.5. Resonance widths

The shapes of the resonances seen in the experimental data and the classical simulations are
complicated. In particular, the resonances are not normally symmetrical about F (j)

s , with details
depending upon Fµ and j. Here we show how the classical widths can be defined and computed,
and discuss some of the reasons for the shapes observed. A detailed comparison between the
classical simulations and the experimental data is provided by Galvez et al (2005), and they have
shown that the experimental results display the same complexities.

In order to estimate the widths, it is necessary to isolate the resonances from the background.
This is achieved by noting that, on either side of the resonance, Pi(Fs) increases approximately
linearly (figure 14). The background may be eliminated by subtracting these straight line
segments from Pi(Fs) to give an adjusted probability that is approximately zero on both sides
of the resonance, as shown in the right panel of figure 14. The only complication with this
procedure is that the straight line segments have different gradients, so we form a new fit to
the background, Pfit

i = m(Fs)Fs + c(Fs), where the gradient, m(Fs), and constant, c(Fs), change
smoothly between the values on either side of the resonance (m1, c1) and (m2, c2) respectively.
If the straight line segments are on the intervals F1 � Fs � F2 and F3 � Fs � F4, with F2 < F3

(chosen by eye), we set

m(F) = m1 − m2

2
+

m1 + m2

2
tanh(αF + β), α = 4

F3 − F2
, β = −2(F3 + F2)

F3 − F2
,

with a similar fit for c(F).
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Figure 14. A graph of the j = 2 resonance for �0 = 0.1278 (n0 = 47) with
Fµ = 0.1. On the left is the ionization curve with the straight line fits, as described
in the text. On the right is the difference, having subtracted the background.

In figure 14 we show how this process works for the j = 2 resonance with n0 = 47 (�0 =
0.1278) and Fµ = 0.1, which is a fairly typical example: in these calculations, a microcanonical
distribution of initial states with 1296 orbits, for each value of Fs, is used and the envelope is
16-113-16.

The left panel of figure 14 shows that both sides of a resonance Pi(Fs) are approximately
linear, but with different gradients. The difference between these gradients changes with Fµ and,
of course, is zero when the resonance disappears. The right panel of figure 14 shows the graph
of Pi(Fs) − Pfit

i (Fs) which highlights the resonance shape; this is clearly asymmetrical about
the maximum. The graph shown is typical though the degree of asymmetry changes with j and
Fµ. The position of the resonance, the two gradients m1 and m2 and the width of the adjusted
ionization probability all provide tests for any theory. Comparisons of these parameters obtained
from classical calculations and experiment are given in Galvez et al (2005).

In this particular example F (2)
s = 0.0802: the width at half-height is about �Fs = 0.0018.

The calculated position of this dynamical resonance varies from F(2)
s = 0.0797 (Im = 1) to

0.0800 (Im = 0). The spread in F(2)
s due to the variations in Im is therefore about 0.0003, about

one-sixth of the half-height width seen in figure 14: this difference is fairly typical.
We now consider some of the factors determining the resonance shapes and show that these

are partly determined by a combination of substate averaging and non-adiabatic effects. Consider
ionization from a given substate: for illustrative purposes choose n0 = 47 (�0 = 0.1278), Im = 0,
Fµ = 0.1 and use a 4-50-4 envelope with initial conditions Ie(0) = −0.9, −0.8, −0.6 and −0.4.
The values of Fcrit − Fµ are depicted by the arrows in each of the four graphs and adiabatic
invariance suggests that Pi = 1 to the right of these arrows.

When Ie(0) = −0.9, the j = 1–5 resonances are clearly present; the positions and full-
widths, as defined in section 4.2, are given in table 6. For Ie = −0.8 only the first three resonances
are visible because Fcrit = 0.256. In figure 16 we see the j = 2 resonance disappearing as Ie(0)

increases.
In this example, adiabatic invariance predicts that the j = 4, 3, 2 and 1 resonances disappear

when Ie = −0.80, −0.60, −0.20 and 0.63, respectively: figures 15 and 16 show these predictions
to be approximately true. These data also show that as Ie increases and the adiabatic boundary
encroaches upon each resonance, it broadens, acquires an asymmetry and eventually disappears.
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Table 6. Values of F(j)
s , F (j)

s and the full resonance width, for the resonances
shown in figures 15 and 16, the latter two items being computed as in table 2,
with the Fs-grid being 10−4. The radius of convergence of the series (25), for this
problem, is about 0.18.

1 2 3 4 1 2 3
j Ie = −0.9 Ie = −0.8

F
(j)
s 0.0413 0.0801 0.109 0.122 0.0413 0.0801 0.109

F (j)
s 0.0407 0.0804 0.119 0.154 0.0407 0.0805 0.1185

Full-width 0.0014 0.0018 0.0028 0.0017 0.0027 0.009
Ie = −0.6 Ie = −0.4

F (j)
s 0.0408 0.0804 – – 0.0408 0.0788 –

Full-width 0.0026 – 0.0035 –
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Figure 15. Ionization probabilities for �0 = 0.1278, Fµ = 0.1, Im = 0 and
Ie(0) = −0.9 and −0.8.
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Figure 16. Ionization probabilities for �0 = 0.1278, Fµ = 0.1, Im = 0 and
Ie(0) = −0.6 and −0.4.

In other cases, when Fµ > Fs, an ionization boundary can also encroach from the left (figure 5)
and this will also change the shape of the resonance.

This example, which is typical, suggests that the width and shape of the microcanonical
averaged resonances is caused mainly by the effect of the separatrix between bound and free
motion, which distorts nearby resonances, rather than the variation in the resonance position with
Im. It is therefore difficult to provide theoretical estimates of the resonance width and shape.
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Figure 17. Ionization probabilities (upper graph) and ionization times (lower
graph) for the parameters defined in the text. Here �0 = 0.0528 and Fµ = 0.13.

5. Resonance timescales

The classical adiabatic ionization mechanism, described in section 3.3, suggests that, in the
absence of a resonance, ionization occurs when F = λ(t)(Fs + Fµ) reaches a critical value defined
by the condition F = Fcrit(Ie, Im): at this time, ionization from a particular orbit occurs within
a Kepler period. This behaviour has been checked numerically when Fs = 0 (Rath 1990) and
the results of the present calculations, where Fs > 0, show the same behaviour. With increasing
scaled frequency, the dynamics become less adiabatic although this behaviour persists, albeit
with the boundaries becoming blurred, as is seen clearly in figure 2 of Richards (1996a).

The classical ionization mechanism at a resonance is different because here for an orbit to
be ionized it must first be transported into a region of large Ie, that is smaller Fcrit, by motion
around the resonance island. Hence the rate of ionization will depend upon the period of this
motion; at the island centre, this is given approximately by equation (35), which shows the period
to be O(F−3/2�0

−1/2). Thus we should expect the time dependence of the ionization probability
on and off resonance to be quite different.

These predictions can be checked by computing the time at which Pi(Fs, t) reaches a given
proportion of its final value. In figure 17 we show two graphs which allow comparison of this
ionization time with the ionization probability. The upper graph is the ionization probability,
Pi(Fs), for �0 = 0.0528 (n0 = 35), Fµ = 0.13 starting in the initial state (Ie, Im) = (−0.4, 0.2),
using a 16-50-16 envelope and 1600 orbits, which is the same as in figure 2. The lower graph
shows the time, Th, at which Pi(Fs, t) reaches half its final value, with Th being measured in units
of the field period: the horizontal line is at T = 16Tf , the time when the field amplitude reaches
its maximum.
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There are several features of this comparison worthy of note.

1. For Fs > 0.06, ionization occurs close to end of the switch-on time, T = 16Tf . Since
Fcrit(−0.4, 0.2) = 0.198, the adiabatic condition suggests that away from resonances and
these initial conditions, bound states exist only for Fs < 0.07.

2. At the j = 1, 2 and 3 resonances, ionization occurs some time after the field has reached its
maximum amplitude, with the longest delay occurring at the edges of the resonance and the
shortest near the maximum in Pi. This is consistent with the description given in section 4,
where it is shown that close to the resonance edge transport is near the separatrix where the
motion is slowest. Formula (35) for ωj, gives, for these parameters, the 1/2-period near the
resonance island centre of about 14Tf , which is consistent with the lower graph of figure 17.

3. The local maximum in Th at Fs � F (2)
s cannot, at present, be explained.

4. The ionization time near the local maximum in Pi at Fs = 0.0428 has the same shape
as those near the j = 1 and 2 resonances, but ionization clearly takes longer, suggesting
that this structure is due to a higher-order resonance. Linear interpolation between the
j = 1–3 resonances suggests this could be the j = 2 2

3 resonance. A similar calculation
suggests that local maximum in Th at Fs � 0.0537 could be the j = 31

3 resonance.
It is not easy to see what produces these non-integer resonances. Second-order perturbation

theory applied to the mean motion Hamiltonian (22) does not appear to give 1/3 resonances;
this suggests that higher harmonics of φe are required and these occur, at this level of averaging,
only if higher-order terms of θ1(ψ, χ) and θ2(ψ, χ) (equations (12) and (A.9)) are included.

5. For Fs � 0.05, the boundary at Fcrit − Fµ = 0.068 is beginning to affect the dynamics and
seems to be interfering with the j = 3 resonance.

6. Envelope effects

In the previous section it was shown how resonance islands affect ionization times. Here we
examine the effect of the envelope switch-on time, Ta = 2πNa/�, on a particular resonance. At
this point it is useful to recall that the dynamical resonances discussed here are unusual because
each exist only for a narrow range of Fs and within this interval the resonance island moves
from the lower to the upper edge of phase space, see figures 6–10. Moreover, the motion inside
a resonance island is very slow (equation (35)). If Fs ∼ F(j)

s , for some j, then for most of the
switch-on period the resonance island does not exist. But for some time close to Ta, an island
develops at the bottom edge of phase space and as t → Ta it moves up through phase space and
through the initial phase line. As this happens the line is distorted, with the amount of distortion
depending upon the relative values of dλ/dt and the frequency of the motion in the island. For
short switch times, the initial phase line Ie(0) evolves into a nearby line at t = Ta, as shown
in the left panel of figure 20. For relatively long switch times, there may be sufficient time for
the initial phase line to develop an incipient homoclinic tangle and become quite complicated,
as seen in the right panel of figure 20. The examples considered next show how changes in the
switch time, Ta, can dramatically affect the classical ionization probability.

The demonstration of this effect is in two parts. Firstly, we show some exact numerical
results illustrating how the ionization probability changes with Ta. In this example, we choose
the low frequency, �0 = 0.011414 (n0 = 21), Im = 0.2, Fµ = 0.13 and examine Pi(Fs) in the
vicinity of the j = 7 resonance for the envelope Na-50-Na, for Na = 1–40. From table 2 we see
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Figure 18. Some graphs of the ionization probability in terms of the scaled field
f = (Fs − 0.024925) × 104 across the j = 7 resonance for �0 = 0.011414 and
switch times for 1 � Na � 17; for Na = 15, Pi = 0.
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Figure 19. Some graphs of the ionization probability in terms of the scaled field
f = (Fs − 0.024925) × 104 across the j = 7 resonance for �0 = 0.011414 and
switch times for 23 � Na � 40.

that when Na = 16, Pi(Fs) has its maximum at Fs = 0.024950 and that the resonance width is
�Fs � 8 × 10−5.

In figure 18 we show how Pi(Fs) changes with Na: for these calculations we used 900 orbits
and a grid δFs = 2 × 10−6, so there are 50 data points for each unit of f = (Fs − 0.024925) ×
104.

The left panel of figure 18 shows ionization probabilities for some values of Na in the range
1–17. The variation of Pi with Na shows a surprising amount of variation; in particular, we note
that for Na = 15, the ionization probability is zero across the resonance.

Also observe that F (j)
s changes by �F ∼ 5.2 × 10−5 for Na in this range, and that this is

comparable to the resonance width. This explains why an unambiguous relation between F(j)
s

and F (j)
s does not exist.

In figure 19 the ionization probabilities for 23 � Na � 40 are shown. With these longer
switch times more structure is seen. For instance, with Na = 31 and 36, Pi(Fs) has two local
maxima and for both, Na = 31 and 37, the probability has a long, low plateau after the maximum.
A qualitative explanation of this feature is given next.

The behaviour depicted in figures 18 and 19 can be understood qualitatively using a
combination of the mean-motion Hamiltonian (equation (39)) and the resonance Hamiltonian.
We assume that initially the system is in a given Ie-state with its conjugate variable uniformly
distributed in (0, π). This initial phase line, C0, evolves during the switch-on period: in scaled
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Figure 20. Plots of Ca, formed by evolving the initial phase curve Ie(0) = −0.3
through various switch times, Ta = 2πNa/�; - - -, separatrixes of the resonance
Hamiltonian (equation (40)) at time Ta.

units, with In = 1, Km is

Km = 3
16λ(t)2

(
F 2

s + 1
2F

2
s

)
I2
e + 1

4λ(t)�0FµA(Ie)B(Ie) sin (2ψe − 3g(t)) sin �0t, (39)

where g(t) = ∫ t

0 dt λ(t)
(
Fs + Fµ cos �0t

)
. For t � Ta (and before the switch-off time), λ = 1 and

this Hamiltonian simplifies to

Km = 3

16

(
F 2

s +
1

2
F 2

s

)
I2
e +

1

4
�0FµA(Ie)B(Ie) sin

(
2ψe − 3ga − 3Fst +

3Fµ

�0
sin �0t

)
sin �0t,

where ga = g(Ta) − TaFs − (Fµ/�0) sin �0Ta. Near the jth resonance, this can be approximated
by the resonance Hamiltonian,

Kj = 3

16

(
F 2

s +
1

2
F 2

s

) (
Ie − αj

)2
+

1

2
�0FµA(Ie)B(Ie)J

′
j

(
3Fµ

�0

)
cos(2θe + jπ), (40)

where αj is defined after equation (32) and 2θe = 2ψe − (3Fs − j�0)t − 3ga, (t � Ta).
During the period 0 � t � Ta, the initial phase curve evolves according to the Hamiltonian

(39) into the line Ca. Hence by plotting the line Ca and the contours of Kj (the dashed lines), we
obtain a qualitative picture showing how Pi will be affected by the field switch.

In figure 20 we show the separatrix of Kj and the line Ca for Fs = 0.0263, Fµ = 0.14,
�0 = 0.0114, Im = 0.2 and the initial state Ie(0) = −0.3, when Na = 1, 3 and 35: the field
values are slightly different from those used to generate figures 18 and 19 because an approximate
Hamiltonian is used.

For Na = 1 the line Ca is close to the initial line, Ie(0) = −0.3. Slightly less than half of
Ca lies inside the separatrix and these orbits will be transported to regions of larger Ie and some
will ionize depending upon the value of Ic

e .
For Na = 3, the curve Ca is more distorted; a smaller proportion of orbits lie inside the

separatrix, but all of these are close to it and all will be transported to Ie larger than the equivalent
points of the previous example.

For Na = 35, Ca has developed a complicated shape due to the motion inside the island. In
this example, a significant proportion of the orbits inside the separatrix are close to the horizontal
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line through the island centre, and so they will not be transported to regions of large Ie. Clearly,
this structure is very sensitive to changes in Na and this sensitivity will be reflected in Pi.

These figures provide a qualitative explanation for the complications seen in figures 18 and
19. In particular, they show why there is no simple, precise relation between F(j)

s and F (j)
s ; they

also show that the dynamics underlying the apparently simple resonances seen in figure 1 are
very complicated.

7. Conclusions

In this paper we examine the behaviour of a classical hydrogen atom in parallel static and
microwave fields, with frequencies that are low by comparison to the unperturbed orbital
frequency. There are three main reasons why the classical atom is considered.

First, it is not necessary to make dynamical approximations in order to numerically
integrate the classical equations of motion. The errors of the estimated ionization probability
are determined mainly by the Monte Carlo sampling errors, and with modern computers these
can be made acceptably small. This is in contrast to quantal calculations on problems of this
type where it is necessary to make approximations, particularly to the continuum, such as basis
truncations or the imposition of a spatial boundary in a grid-calculation, the accuracy of which
are difficult to estimate.

Second, within the framework of classical dynamics there is a range of easily applied
approximations that help provide understanding of observed phenomena. The corresponding
approximations are not so easy to apply to either Schrödinger’s or Heisenberg’s equations of
motion.

Finally, using techniques of analytical dynamics, it is possible to construct an approximate
Hamiltonian, which provides a fairly accurate approximation to the exact classical dynamics
(see figure 5) and which may be used as a basis for feasible quantal calculations.

The main effects of interest here are the resonances between the microwave field and the
Stark frequency induced by the static field. These resonances were first observed by Galvez
et al (2000) and this paper also presents the first theory to describe these resonances qualitatively.
It was shown how these resonances are responsible for an enhanced ionization signal over
a narrow range of static field strengths, for fixed microwave field amplitude and frequency.
Additionally, these signals disappear at particular combinations of the two field amplitudes, and
recent experiments (Schultz 2003, Galvez et al 2005, Schultz et al 2005) have extended the
measurements of these ‘disappearance fields’.

Since the first observations of these resonances, three theoretical papers describing the
phenomena from different perspectives have been published. Oks and Uzer (2000) used a
Floquet analysis to derive zero-order estimates of F(j)

s and F(j,k)
µ . Robicheaux et al (2002) have

solved Schrödinger’s equation for this problem using a split-operator method and have made
comparisons with the classical and experimental ionization probabilities for n0 = 39 across the
j = 1 resonance with Fµ = 0.144. These calculations suggest that the classical and quantal
values of F (1)

s are very close, but that the quantal value of Pi is smaller than the classical value
for Fs > F (1)

s . In addition, the time-dependence of the ionization probability is described for
three values of Fs and this appears to contradict the results summarized in figure 17, though
it is difficult to make comparisons between substate-averaged and unaveraged data. Ostrovsky
and Horsdal-Pedersen (2003) used an energy shell subspace with a time-dependent electric field
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and weak, perpendicular magnetic field, with the aim of understanding oscillations seen in the
experimental result, subsequently attributed to another cause, see Wilson et al (2005). This
analysis is based on the same type of averaging approximation that leads to the Hamiltonian (22)
(see also Born (1960, section 38), and inevitably gives zero-order estimates of F(j)

s and F(j,k)
µ .

In this paper we have described the classical dynamics of this system in more detail: in
particular, more accurate values of F(j)

s and F(j,k)
µ are determined and the properties of the

classical resonances are described in some detail. We now list these features and discuss the
probable consequences to the quantum mechanics.

1. We have established that the position of the dynamical resonance, F(j)
s , as computed by theory,

is not at precisely the field F (j)
s , at which the ionization probability is largest, although

F(j)
s � F (j)

s . Furthermore, we have shown, numerically, that the difference F(j)
s − F (j)

s can
depend on the field envelope.

2. We have isolated the terms in the Hamiltonian that give rise to the dynamical resonance. This
allows the computation of the dynamical resonance position using high-order perturbation
theory; where this series converges, we obtain improved estimates of the resonance position.

This analysis is essentially the same as the corresponding quantal theory which we therefore
expect to give the same result. Furthermore, this suggests that the discrepancy noted in point
1 above will also occur in an accurate quantal calculation.

3. Using a classical approximation, based on two stages of averaging, we have derived a number
of conditions necessary for the dynamical resonance to affect the ionization probability. These
depend upon properties of the classical resonance island, the most significant being the island
width.

A dynamical resonance affects the ionization probability only if it is wide enough to
bridge the gap in phase space between the initial state and those states that ionize, see
section 4.2. Because the ratio of these two actions is independent of the initial principal
number, we expect a similar story in the quantal description, though quantal effects will
inevitably blur these boundaries. This suggests that there may be cases where a resonance
not seen in the classical ionization probabilities will be visible in the quantal probabilities.

Besides the island width, its area also plays a role in quantum mechanics; this area is
proportional to the initial principal quantum number, n0, so we expect the resonances seen
here and in current experiments to change, and possibly disappear, as n0 decreases.

4. The resonances in the ionization probability, not averaged over substates, are generally very
sharp, see for instance figure 12 and table 2. The full-width of an isolated resonance is generally
smaller than its theoretical shift produced by changing Im = mh̄, as seen by comparing the data
presented in tables 2 and 5. However, resonances near an adiabatic boundary are significantly
broadened and asymmetries are introduced (figures 15 and 16). This causes substate-averaged
resonances to be far wider than isolated resonances, and also affects their shape.

The classical dynamics of this process is complicated and not understood. Because the
experimentally observed resonances behave in a similar fashion, we expect a similar dynamical
effect in any quantal calculation, but understanding this is harder than understanding the
classical dynamics.

5. The shape of an isolated classical resonance and the value of F (j)
s , with no substate averaging,

can be affected by the field envelope if the fields are switched on sufficiently slowly (see
figures 18 and 19). These changes are caused by the phase line representing the initial state
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becoming tangled as the separatrix of the resonance island passes through it (see figure 20).
We expect this behaviour to be seen in the quantum dynamics provided the principal quantum
number is large enough, but how large is not known. Preliminary quantal calculations based
on the Hamiltonian defined in equation (22), with ionization added using complex energies,
support this view.

6. Classical resonances develop over a timescale that is much longer than that of the ionization
process operating away from resonance. This is because, at resonance, ionization happens by
transport around the resonance island and this is a relatively slow process. Furthermore, across
a resonance, the ionization time appears to reflect the island dynamics. For instance, at the
edge of a resonance, the ionization time is longest because motion near the separatrix is very
slow: this and other, not understood, features are seen in the lower panel of figure 17.

As with point (5) above, we should expect to see similar behaviour in a quantal calculation,
provided the principal quantum number is sufficiently large, but how large is not yet known.
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Appendix A

A.1. Action variables

The derivation of the required results is easiest if scaled variables are used. If a is any scale length
and I0 an action, suitable scaled variables are

F̃ = µa3

I2
0

F, Ẽ = µa2

I2
0

E, α̃ = µe2a

I2
0

α, Ĩk = Ik

I0
.

Taking I0 to be the initial value of In and a the semi-major axis of the initial Kepler ellipse,
a = I2

n/µe2 we have

F̃ = I0
4

µ2e6
F, Ẽ = I0

µe4
E, α̃ = α.

In the following, these scaled units are used but for clarity the tilde is not shown. Most of these
results are obtained using a Maple program to manipulate the series, which were computed to
higher orders than quoted here. In the subsequent analysis, it is assumed that Im � 0; for Im < 0,
replace Im by |Im|.

A.1.1. Series for I1. For I1 set ξ2 = y, so equation (8) becomes

I1 = 1

2π

∫ y2

y1

dy

y

√
f1(y), f1(y) = −Fy3 − 2Wy2 + 2α1y − I2

m, (A.1)
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where W = −E > 0. In the parameter range of interest, f1(y) has three real roots, two positive
0 � y1 < y2 (with y1 = 0 only when Im = 0) and one negative root, y3 = −y−/F < 0. We may
write

f1(y) = (Fy + y−)(y − y1)(y2 − y), y1y2y− = I2
m, (y1 + y2)F = y− − 2W,

so that y− = O(1) and, if F = 0, y− = 2W . Only the value of y− is needed because all quantities
of interest can be expressed in terms of the combinations y1 + y2 and y1y2. Then the series for I1

is

I1 = √
y−

∫ y2

y1

dy

y

√
(y − y1)(y2 − y)

√
1 +

Fy

y−
= √

y−
∞∑

k=0

ak

(
F

y−

)k

Hk, (A.2)

where

Hk = 1

4π

∮
C

dz zk−1h(z) and ak =
√

π

2k!�(3/2 − k)
,

and where h(z) = −√
(z − y1)(y2 − z) has a cut on the real axis between y1 and y2 such that on

the real axis between these two roots on the upper branch h(x) < 0 and on the lower branch h > 0;
for real x and x > y2, h(x) = i

√
(x − y1)(x − y2) and for x < y1, h(x) = −i

√
(y1 − x)(y2 − x).

The contour C encloses the branch cut between y1 and y2 but not the origin.
If k = 0 the integrand has a pole at z = 0 and contributions from the circle z = Reiθ, as

R → ∞, so

H0 = 1
4(

√
y2 − √

y1)
2.

For k � 1 the only contribution is from the circle at infinity, C∞

Hk = i

4π

∮
C∞

dz zk

√
1 − y1

z

√
1 − y2

z
= (−1)k

2

k+1∑
r=0

arak+1−ry
r
1y

k+1−r
2 , k � 1.

Some values are

H1 = 1
16(y1 + y2)

2 − 1
4y1y2, H2 = 1

32(y1 + y2)[(y1 + y2)
2 − 4y1y2],

H3 = 1
256 [(y1 + y2)

2 − 4y1y2][5(y1 + y2)
2 − 4y1y2],

H4 = 1
512(y1 + y2)[(y1 + y2)

2 − 4y1y2][7(y1 + y2)
2 − 12y1y2].

A.1.2. Perturbation expansion for y−. Now we need an expression for y− > 0 which is
proportional to the negative root of f1(−y−/F) = 0. Because y− = O(1), it is expedient to
define y = −zF to give the equation

z3 − 2Wz2 − 2α1Fz − F 2I2
m = 0.

When F = 0, z = 2W , so we put z = 2W + z1F + · · ·, then perturbation theory gives

z = y− = 2W +
α1F

W
+

F 2

4W3

(
WI2

m − 2α2
1

) − α1F
3

8W5

(
3WI2

m − 4α2
1

)
+ · · · .
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Thus

y1 + y2 = α1

W
+

F

4W3

(
WI2

m − 2α2
1

) − α1F
2

8W5

(
3WI2

m − 4α2
1

)
+ · · · ,

and

y1y2 = I2
m

2W
− α1I

2
m

4W3
F − I2

m

16W5

(
WI2

m − 4α2
1

)
F 2 + · · · .

Substituting these expressions for y1 + y2 and y1y2 into the above expressions for Hk gives

I1 = α1

2
√

2W
+

1

2
Im −

√
2F

64W5/2

(
2I2

mW − 3α2
1

) − 5
√

2α1F
2

1024W9/2

(
6I2

mW − 7α2
1

)
+ · · · . (A.3)

A.1.3. Series for I2. For I2 we set η2 = u, and equation (9) gives

I2 = 1

2π

∫ u2

u1

du

u

√
f2(u), f2(u) = Fu3 − 2Wu2 + 2α2u − I2

m.

In the parameter range of interest, f2 has three real positive roots, 0 � u1 � u2 and u+/F , so
we write f2(u) = (u+ − Fu)(u − u1)(u2 − u) with u1u2u+ = I2

m and u1 + u2 = (2W − u+)/F .
Thus

I2 =
√

u+

2π

∫ u2

u1

du

u

√
(u − u1)(u2 − u)

√
1 − uF

u+
= √

u+

∞∑
k=0

ak

(
− F

u+

)k

Hk, (A.4)

where ak and Hk are defined above.
The perturbation expansion for u+ is given, as before, by setting u = z/F to write the

equation f2 = 0 in the form z3 − 2Wz2 + 2α2Fz − F 2I2
m = 0, giving

u+ = 2W − α2F

W
+

F 2

4W3

(
WI2

m − 2α2
2

)
+

α2F
3

8W5

(
3WI2

m − 4α2
2

)
+ · · · .

This then gives

u1 + u2 = α2

W
− F

4W3

(
WI2

m − 2α2
2

) − α2F
2

8W5

(
3WI2

m − 4α2
2

)
+ · · · ,

and

u1u2 = I2
m

2W
+

α2I
2
m

4W3
F − I2

m

16W5

(
WI2

m − 4α2
1

)
F 2 + · · ·

and hence the expression for I2 is,

I2 = α2

2
√

2W
− 1

2
Im −

√
2F

64W5/2

(
2I2

mW − 3α2
2

) − 5
√

2α2F
2

1024W9/2

(
6I2

mW − 7α2
2

)
+ · · · .

These series for I1 and I2 now need to be inverted to give α1, α2 = 2 − α1 and W as power
series in F . The zero-order term is trivial, so we substitute the series

α1 = σ1 +
∞∑

k=1

ckF
k, σ1 = 2I1 + Im

In

, W = 1

2I2
n

+
∞∑

k=1

WkF
k

into the series for I1 and I2 and solve for the unknown coefficients to give the energy and the
separation constant quoted in equations (10) and (11).
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A.2. Angle variables

Using the definition θk = ∂S/∂Ik and the notation introduced in the previous section,

θk = 1

4

∫ y

y1

dy

y

∂f1/∂Ik√
f1(y)

+
1

4

∫ u

u1

du

u

∂f2/∂Ik√
f2(u)

. (A.5)

By differentiating equations (8) and (9), we see that∫ y2

y1

dy

y

∂f1/∂Ik√
f1(y)

= 2πδ1k and
∫ u2

u1

du

u

∂f2/∂Ik√
f2(u)

= 2πδ2k. (A.6)

Using the factorization introduced in the previous section and putting

y = y1 cos2(ψ/2) + y2 sin2(ψ/2), u = u1 cos2(χ/2) + u2 sin2(χ/2), (A.7)

we obtain

θk = 1

2
√

y−

∫ ψ

0
dψ (α1k − Wky(ψ))

(
1 +

Fy(ψ)

y−

)−1/2

− 1

2
√

u+

∫ χ

0
dχ (α1k + Wku(χ))

(
1 − Fu(χ)

u+

)−1/2

, (A.8)

where α1k = ∂α1/∂Ik and Wk = ∂W/∂Ik; the series expansions for both these variables are derived
in the previous section. The first integrand can be expressed as a series in cos nψ and the second
as a series in cos nχ, so integration gives

θk = ck1ψ + Pk(ψ) + ck2χ + Qk(χ), k = 1, 2, (A.9)

where (Pk(x), Qk(x)) are odd 2π-periodic functions. Using the relations (A.6), we see that
c11 = c22 = 1 and c12 = c21 = 0 and evaluation of these integrals, to O(F), gives their Fourier
series representations

4P1 = − σ1[4 − I3
n(2In + 7(2I2 + Im))F ] sin ψ − I4

nσ
2
1F sin 2ψ,

4P2 = − σ1[4 − I3
n(10In + 7(2I2 + Im))F ] sin ψ − I4

nσ
2
1F sin 2ψ, (A.10)

4Q1 = − σ2[4 + I3
n(10In + 7(2I1 + Im))F ] sin χ + I4

nσ
2
2F sin 2χ,

4Q2 = − σ2[4 + I3
n(2In + 7(2I1 + Im))F ] sin χ + I4

nσ
2
2F sin 2χ,

where σk = √
Ik(Ik + Im)/In, k = 1, 2.WhenF = 0 these expression lead to the formulae quoted

in equation (14).

A.3. Evaluation of ∂S/∂F

The generating function S1(θ1, θ2, ξ, η) returns to its initial value when either θ1 or θ2 increases
through a period, see Born (1960, page 82); here we use the notation of Goldstein (1980) to
label generating functions. It follows that the Hamiltonian (15) is a periodic function of the angle
variables with zero mean value. By differentiating the generating function S(I, ξ, η) with respect
to F and using the angles (ψ, χ), defined in equations (A.7), we see that ∂S/∂F may be written
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in the form

∂S

∂F
= 1

4
√

y−

∫ ψ

0
dψ

(−y2 − 2WFy + 2α1F

) (
1 +

Fy

y−

)−1/2

+
1

4
√

u+

∫ χ

0
dχ

(
u2 − 2WFu − 2α1F

) (
1 − Fu

u+

)−1/2

, (A.11)

where WF = ∂W/∂F and α1F = ∂α1/∂F . The two integrands can be expressed in terms of even
Fourier series in ψ and χ respectively, where the constant terms are missing because of the
argument given at the beginning of this section and because of the general result ∂S/∂t = ∂S1/∂t,
which gives ∂S/∂F = ∂S1/∂F . Hence the integral (A.11) leads to the Fourier series defined
in equation (16), where the coefficients (Ak, Bk) depend upon Fs, Fµ and the action variables.
Because of relation (A.9) it follows that no term of Ḟ (∂S/∂F) is independent of the angle variables.

The Fourier series representation of ∂S/∂F is obtained in the same manner as that for Pk(ψ)

and Qk(χ): to O(F), we have

A1 = 1
2I

4
nσ1[(I1 + 3I2 + 2Im) − 1

4I
3
nF(14I2

1 + 27I1Im + 26I1I2 + 22I2
2 + 35I2Im + 22I2

m)],

A2 = − 1
4I

5
nσ

2
1 [1 − FI3

n(4I1 + 6I2 + 5Im)], A3 = − 1
12FI9

nσ
3
1 ,

B1 = − 1
2I

4
nσ2[(3I1 + I2 + 2Im) − 1

4I
3
nF(22I2

1 + 35I1Im + 26I1I2 + 2I2
2 + 15I2Im + 22I2

m)],

B2 = 1
4In

5σ2
2 [1 + FI3

n(3I1 + 7I2 + 5Im)], B3 = − 1
12FIn

9σ3
2 .
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