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ABSTRACT

Unlike Earth, long-wavelength gravity anomalies and topography correlate well on

Venus. Venus's admittance curve from spherical harmonic degree 2 to 18 is inconsistent

with either Airy or Pratt isostasy but is consistent with dynamic support from mantle

convection. A model using whole mantle flow and a high viscosity near-surface layer

overlying a constant viscosity mantle reproduces this admittance curve. On Earth, the

effective viscosity deduced from geoid modeling increases by a factor of 300 from the

asthenosphere to the lower mantle. These viscosity estimates may be biased by the

neglect of lateral variations in mantle viscosity associated with hot plumes and cold

subducted slabs. The different effective viscosity profiles for Earth and Venus may reflect

their convective styles, with tectonism and mantle heat transport dominated by hot

plumes on Venus and by subducted slabs on Earth. Convection at degree 2 appears

much stronger on Earth than on Venus. A degree 2 convective structure may be

unstable on Venus, but may have been stabilized on Earth by the insulating effects of

the Pangean supercontinental assemblage. ^^^`,
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An important difference between Venus and Earth is the strong positive correlation

that exists between long-wavelength gravity and topography on Venus (Sjogren et al.,

1980). This relationship is evident in comparisons of spatial domain maps (Mottinger et

al., 1985, Fig. 5) and can be quantified using recent eighteenth degree and order

spherical harmonic models for Veausian topography (Bills and Kobrick, 1985) and I
	gravity (Bills and Kiefer, 1985). Figure 1 illustrates the correlation between the long- 	 i

wavelength components of gravity and topography as a function of spherical bar-

monic degree for Venus. For comparison, the correlation between the Earth's gravity

field (Lerch et al., 1982), referred to its hydrostatic figure (Nakiboglu, 1982), and

"equivalent rock" topography (NOAA, 1980) is also shown. For degrees 3 through 18,

the correlation is positive and statistically significant for Venus. By contrast, the corre-

lation is generally poor for harmonic degrees less than 13 on Earth.

One way to understand the relationship between gravity and topography is to

model the observed gravity as the sum of two components: a coherent component, in

which topography and compensating masses are related by some type of isostasy, and an

incoherent part, due to density variations which are uncorrelated with topography.

Assuming a linear relationship between the gravity harmonics (GI.) and topography

harmonics (HI.) (Dorman and Lewis, 1970), this can be expressed as

Glm = FI Him + Ilm
	 (1)

where FI is a spectral admittance and the II,,, are the residual gravity coefficients.

Bills and Kiefer (1985) determined the best fitting admittance curve for the Venus grav-

ity and topography harmonics. This is shown in Figure 2, along with one standard devi-

ation uncertainties. The degree 2 admittance is poorly constrained because of the low

correlation between gravity and topography at degree 2. By comparing the observed

Venusian admittance curve with theoretical admittance curves for several possible com-

pensation mechanisms, we can gain a better understanding of the relationship between

long-wavelength gravity and topography on Venus.
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Bowin (1983) and Bowin et al. (1985) have argued that the high correlation between

gravity and topography on Venus is best explained by variations in crustal thickness.

The admittance for Airy compensation of topography at degree l on a rigid planet is

Ft	
p,, 21 +1 (1 — (1 

_2 )t )	 (2)

where p, is the crustal density, p,,, is the average density of Venus ( 5.24 Mg/m 3 ), R

is the planetary radius (6051.5 km), and D is the isostatic compensation depth ( Phillips

	

and Lambeck, 1980, equation 20). Viscous adjustment due to self-gravitation, which is	
I

important at long wavelengths, is not included in the Phillips and Lambeck model. It

can be included by multiplying the expression in equation 2 by ht , the isostatic Love

number for degree 1. For the Earth's radial density profile, ht is given approximately by

ht ;Zts l + 0.6	 (3)

(Hager, 1983). The similarity in mass and radius between Vatnus and Earth suggests

that the two planets have similar radial density profiles and Love numbers. Thus, the

Airy compensation admittance function becomes

Ft	
pav 1(21 +1) (1 	 In(4)

At the long wavelengths considered here, the admittance for a Pratt model with compen-

sation depth 2D is also given by equation 4.

figure 2 compares Venus's observed admittance curve with admittances for Airy

compensation at 100 km and 200 km depth (or Pratt compensation at 200 km and 400

km). A crustal density of 2.8 Mg/m 3 is assumed. The two compensation curves

broadly constrain the observed admittances, indicating that topography on Venus is dee-

ply compensated, with a best fitting compensation depth of approximately 150 km (Airy

model) or 300 km (Pratt model ). However, the model curves do a poor job of reproduc-

ing the shape of the observed admittance curve, so we conclude that crustal thickness
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thickness variations, whether modeled as Airy or Pratt isostasy, do not satisfactorily

explain the long-wavelength relationship between gravity and topography on Venus.

Phillips et al. (1981) modeled western Aphrodite Terra using a combination of

regional elastic flexure and local isostatic compensation and found a best fitting compen-

sation depth of 115 km. They argued that compensation at such a large depth could not

be passively maintained f.)r geologically long periods of time and that the gravity and

topography of this region is best understood in terms of dynamic compensation from

mantle convection. Similarly, apparent isostatic compensation depths in excess of 300

km for the Beta Regio area are also best understood in terms of mantle convection (Phil-

lips and Malin, 1983). Although neither Phillips et al. nor Phillips and Malin attempted

to model Venus's gravity field using a mantle convection model, their results, together

with the failure of the Airy and Pratt compensation models, suggest that Venus's admit-

tance curve may be matched using a dynamic compensation model.

In a convecting planet, mantle flow deforms both the upper surface and the core-

mantle boundary. The total gravity anomaly in such a convecting system is the sum of

contributions from the density contrasts driving the flow plus the density contrasts aris-

ing from the flow-induced boundary deformations. Furthermore, the upper surface

deformation produces dynamic topography relative to an undeformed spheroid. Thus,

in a dynamic compensation model, both gravity and topography are manifestations of

mantle convection. Richards and Hager (1984) described a dynamic compensation model

in which the mantle is assumed to be self-gravitating and incompressible, with a spheri-

cally symmetric [Newtonian viscosity structure. Variables are expanded azimuthally in

terms of spherical harmonics, and propagator matrices are used to solve the radial

dependence of the equations of motion, with free-slip boundary conditions applied at

both the upper surface and at the tore-mantle boundary. The gravitational potential at

harmonic degree l is given by

a

P

R
r

bUl,, = 
4aGR
21 + 1 J xl (r )aPlm (r )dr

Re.n
(5)

i

6.
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The core radius is assumed to be 3240 km (Basaltic Volcanism Study Project, 1981,

pp.682-885), Kt (r) is a dynamic response function which gives the effect of a unit den-

sity contrast at harmonic degree I and radius r on the gravitational potential. Exam-

pies of Kt (r) for a variety of radial mantle viscosity profiles are given by Hager (1984,

Figure 4). 6ptm (r) is the component of density contrast which drives the flow at degree

I and order m . Similarly, the upper surface deformation is given by

Rte
,l

	

6rtm =	 D, ( r )6ptm ( r ) drR` 	 (8)

where DI (r) is a surface deformation response function. For spherically symmetric

viscosity, K and D do not depend on order m. The admittance is computed as

E but. 6rtm
__ m

	

Ft	
9 E (6rlm )2

M

On the Earth, the density contrast 6ptm (r ) can be estimated from seismic tomog-

raphy and thermal models of subducted slabs (Hager, 1984; Hager et al., 1985). For

Venus, such observational evidence is not available. For simplicity, we assume that 6ptm

is constant throughout the mantle, with no variation with depth. We have also con-

sidered models in which the density contrast increases linearly from the core-mantle

boundary to the surface and models in which the density contrast is specified randomly.

Both models give results which are similar to those for the depth-independent density

contrast model. The insensitivity of the admittance curve to the exact form of the

radial variation of 6ptm (r) suggests that our results are not severely biased by the

assumed density contrast model.

By comparing model admittance curves for various mantle viscosity profiles, we

can determine whether or not mantle convection can- explain the observed long.

wavelength gravity and topography on Venus. The modeling process is sensitive only to

(7)

relative viscosity variations between the layers. It is not posssible to determine absolute
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viscosity profiles from the modeling technique used here (Richards and Hager, 1984).	 I

Figure 3 presents admittance curves for two different mantle viscosity models, assuming

mantle-wide flow. The dashed line is for a mantle with uniform viscosity. While this

model has the right general form, it slightly underestimates the magnitude of the

observed admittance curve. A better fit can be obtained using models in which viscosity 	 1 `

in the lower mantle is a factor of 3 to 10 less than in the upper mantle. However, the

effect of increasing pressure with depth is expected to cause an increase, not a decrease,

in viscosity with increasing depth, so models whose lower mantle viscosity is less than

their upper mantle viscosity seem rheologically implausible. Alternatively, we consider

the effect of a high viscosity near-surface layer overlying a uniform viscosity mantle.

The solid line in Figure 3 is the admittance curve for a model with a 100 km thick sur-

face layer whose viscosity is 100 times the , antle viscosity. This model satisfactorily	 {

reproduces both the shape and the magnitude of the observed admittance curve, 	 l

Discussion

While crustal thickness variations do not successfully account for the long-

wavelength relationship between gravity and topography on Venus, simple dynamic com-

pensation models, involving whole mantle flow and only two viscosity layers, can success-

fully explain the observed admittance curve. Isostatic models fail because the observed

admittance curve requires a different isostatic compensation depth at each harmonic

degree. In a dynamic model, the peak sensitivity of the geoid to density contrasts occcurs

at a different depth for each harmonic degree. Low degree harmonics are more sensitive

to deep density contrasts, while higher degree harmonics are sensitive to relatively shal-

low density contrasts. This varying depth sensitivity enables the dynamic compensation

model to reproduce the observed shape of Venus's admittance curve.

Figure 4 compares Venus's observed geoid at degrees 2 through 18 (Bills and

Kiefer, 1985) with the geoid predicted by the best fitting dynamic model (the solid line
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of Figure 3). The visual correlation between the two maps further emphasizes the qual-

ity of fit between the dynamic model and the 'observations. The quality of fit between

the dynamic model and the observations is considered in greater detail in Figure 5,

which shows the amount of variance at each harmonic degree in the residual (non-

dynamic) geoid. The results of Hager and Richards (1985) for the Earth are shown for

comparison. At degree 3, the residual variance is only 14% of the observed variance in

Venus's geoid. There is a general increasing trend in the residual variance with increas-

ing harmonic degree. Beyond degree 14, the residual variance is more than 80% of the

data variance. This is not surprising, because other compensation mechanisms, such as
i

elastic flexure and local isostasy, are expected to become more important at shorter

wavelengths. However, the reduction in variance due to the dynamic model is still

significant even at the higher harmonic degrees.

One interesting contrast between Earth and Venus is their difference in behavior at

degree 2. Relative to the components at l>3, Earth has much more power at degree 2

in both the gravity field and topography than Venus does (Mottinger et al., 1985, Fig. 9;

Bills and Kobrick, 1985, Figure 2). We suggest that the poor correlation between grav-

ity and topography at degree 2 on Venus is due to relatively small temperature or den-

sity contrasts in the mantle at this harmonic degree; the noise term therefore dominates

in equation 1. In contrast, the Earth is observed to have substantial heterogeneity at

degree 2 (Hager et al., 1985; Masters et al., 1982). Figure 5 shows this difference clearly:

the residual variance is only 3% of the data variance at degree 2 on Earth, whereas the

residual variance exceeds the data variance at degree 2 on Venus.

We speculate that the relatively weak convection we infer for Venus at degree 2 is

the norm for one-plate planets, where flow occurs beneath a rigid lithosphere. Some

support for this view is given by results for the onset of convection at• marginal stability

with a no-slip boundary condition at the surface (Chandrashekar, 1961). Earth might

differ from Venus at degree 2 because it has continents which periodically assemble into

_s - .
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a supercontinent. Subduction would occur preferentially at the edge of this supercon-

tinent, causing preferential cooling in this region of the mantle, with heating of the man-

tle by internal heat sources beneath the continent and antipodal to the continent

(Anderson, 1982; Chase and Sprowl, 1988). The edge of a Pangea-like continental assem-

blage is predominantly a degree 2 feature, leading to an anomalously strong degree 2

component of mantle heterogeneity.

Substantial debate currently exists concerning the nature of tectonic processes on

Venus (for a review, see Phillips and Malin, 1984). Gravity observations provide an

important constraint on any tectonic model. The best fitting dynamic compensation

models fot the long-wavelenth gravity fields of Eart;: (Hager and Richards, 1985) and

Venus differ substantially in their radial viscosity profiles. Both planets appear to have

high viscosity near-surface layers, as expected for the upper boundary layer of a con-

vecting system with temperature dependent viscosity. Based on our geoid modeling, on

Venus the mantle viscosity appears to remain approximatly constant with depth,

whereas on Earth the viscosity increases by a factor of about 300 from the asthena•tphere

to the lower mantle. It should be emphasized that the dynamic geoid models for both

planets assume laterally symmetric viscosity. This is not true for real planets, where

lateral temperature variations lead to lateral viscosity variations. Richards and Hager

(in preparation) have calculated the effects of high viscosity subducted slabs and low

viscosity hot plumes on the dynamic response function K, (r ). Their numerical models

show that low viscosity plumes have low degree geoid responses that cause the lower

mantle/upper mantle viscosity ratio to appear smaller than that inferred for subducting

slabs. The inferred apparent difference in the viscosity profiles of Venus and Earth and

the dominance of the Venusian highland areas in both the gravity field and topography

are consistent with tectonism and mantle heat transport being dominated by hot plumes

on Venus. This is in contrast to the dominant role of plate tectonics and Subduction on

Earth. Although our results are suggestive of important differences in heat transport on
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Earth and Venus, the approaches used to constrain the viscosity structures are different

for the two planets. For Earth, we used seismic observations interpreted in terms of

interior density contrasts to match the geoid, while for Venus we assume a density

structure and match the admittance. Thus, we cannot at present make a definitive

judgement as to whether or not the Venusian lithosphere exhibits a plate-like style or if

subduction of the lithosphere is involved in convective downwelling and return flow.

Answers to these questions must await future high resolution radar mapping of Venus.
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Figure Captions

Figure 1. Correlation coefficients between gravity and'topography. The solid line is
Venus, the short dashed line is Earth, and the long dashed lines are 95% statisti-
cal confidence limits.

Figure 2. Gravity-topoiraphy spectral admittances. The open circles are observed
values with one standard deviation uncertainties. The solid line is for Airy com-
pensation at 100 km depth or Pratt compensation at 200 km depth. The dashed
line is for Airy compensation at 200 km or Pratt compensation at 400 km.

Figure 3. Observed spectral admittance, as in Fig. 2. The dashed line is for dynamic
compensation using whole-mantle convection and constant viscosity. The solid
line is for whole-mantle convection with a high viscosity surface layer overlying a
constant viscosity mantle,

Figure 4. Comparison of Venus's observed and dynamically predicted geoids. Fig.
4a is the observed geoid at degrees 2. 18 and Fig. 4b is the dynamically predicted
geoid using the solid line model of Fig. 3. Cylindrical equidistant projection.
The contour interval is 20 m; lows are shaded.

Figure S. Residual variance between observed and dynamically predicted geoids for
Venus (solid line) and Earth (dashed line).
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