9,611 research outputs found

    Direct and indirect selection on flowering time, water-use efficiency (WUE, δ (13)C), and WUE plasticity to drought in Arabidopsis thaliana.

    Get PDF
    Flowering time and water-use efficiency (WUE) are two ecological traits that are important for plant drought response. To understand the evolutionary significance of natural genetic variation in flowering time, WUE, and WUE plasticity to drought in Arabidopsis thaliana, we addressed the following questions: (1) How are ecophysiological traits genetically correlated within and between different soil moisture environments? (2) Does terminal drought select for early flowering and drought escape? (3) Is WUE plasticity to drought adaptive and/or costly? We measured a suite of ecophysiological and reproductive traits on 234 spring flowering accessions of A. thaliana grown in well-watered and season-ending soil drying treatments, and quantified patterns of genetic variation, correlation, and selection within each treatment. WUE and flowering time were consistently positively genetically correlated. WUE was correlated with WUE plasticity, but the direction changed between treatments. Selection generally favored early flowering and low WUE, with drought favoring earlier flowering significantly more than well-watered conditions. Selection for lower WUE was marginally stronger under drought. There were no net fitness costs of WUE plasticity. WUE plasticity (per se) was globally neutral, but locally favored under drought. Strong genetic correlation between WUE and flowering time may facilitate the evolution of drought escape, or constrain independent evolution of these traits. Terminal drought favored drought escape in these spring flowering accessions of A. thaliana. WUE plasticity may be favored over completely fixed development in environments with periodic drought

    Long-range electron transfer in structurally engineered pentaammineruthenium (histidine-62) cytochrome c

    Get PDF
    In many biological processes, long-range electron transfer (ET) plays a key role. When the three-dimensional structures of proteins are accurately known, use of modified proteins and protein-protein complexes provides an experimental approach to study ET rates between two metal centers. For Ru(His)- modified proteins, the introduction of histidine residues at any desired surface location by site-directed mutagenesis opens the way for systematic investigations of ET pathways

    The physiological basis for genetic variation in water use efficiency and carbon isotope composition in Arabidopsis thaliana.

    Get PDF
    Ecologists and physiologists have documented extensive variation in water use efficiency (WUE) in Arabidopsis thaliana, as well as association of WUE with climatic variation. Here, we demonstrate correlations of whole-plant transpiration efficiency and carbon isotope composition (δ(13)C) among life history classes of A. thaliana. We also use a whole-plant cuvette to examine patterns of co-variation in component traits of WUE and δ(13)C. We find that stomatal conductance (g s) explains more variation in WUE than does A. Overall, there was a strong genetic correlation between A and g s, consistent with selection acting on the ratio of these traits. At a more detailed level, genetic variation in A was due to underlying variation in both maximal rate of carboxylation (V cmax) and maximum electron transport rate (Jmax). We also found strong effects of leaf anatomy, where lines with lower WUE had higher leaf water content (LWC) and specific leaf area (SLA), suggesting a role for mesophyll conductance (g m) in variation of WUE. We hypothesize that this is due to an effect through g m, and test this hypothesis using the abi4 mutant. We show that mutants of ABI4 have higher SLA, LWC, and g m than wild-type, consistent with variation in leaf anatomy causing variation in g m and δ(13)C. These functional data also add further support to the central, integrative role of ABI4 in simultaneously altering ABA sensitivity, sugar signaling, and CO2 assimilation. Together our results highlight the need for a more holistic approach in functional studies, both for more accurate annotation of gene function and to understand co-limitations to plant growth and productivity

    Natural variation in abiotic stress responsive gene expression and local adaptation to climate in Arabidopsis thaliana.

    Get PDF
    Gene expression varies widely in natural populations, yet the proximate and ultimate causes of this variation are poorly known. Understanding how variation in gene expression affects abiotic stress tolerance, fitness, and adaptation is central to the field of evolutionary genetics. We tested the hypothesis that genes with natural genetic variation in their expression responses to abiotic stress are likely to be involved in local adaptation to climate in Arabidopsis thaliana. Specifically, we compared genes with consistent expression responses to environmental stress (expression stress responsive, "eSR") to genes with genetically variable responses to abiotic stress (expression genotype-by-environment interaction, "eGEI"). We found that on average genes that exhibited eGEI in response to drought or cold had greater polymorphism in promoter regions and stronger associations with climate than those of eSR genes or genomic controls. We also found that transcription factor binding sites known to respond to environmental stressors, especially abscisic acid responsive elements, showed significantly higher polymorphism in drought eGEI genes in comparison to eSR genes. By contrast, eSR genes tended to exhibit relatively greater pairwise haplotype sharing, lower promoter diversity, and fewer nonsynonymous polymorphisms, suggesting purifying selection or selective sweeps. Our results indicate that cis-regulatory evolution and genetic variation in stress responsive gene expression may be important mechanisms of local adaptation to climatic selective gradients

    Pleiotropy of FRIGIDA enhances the potential for multivariate adaptation.

    Get PDF
    An evolutionary response to selection requires genetic variation; however, even if it exists, then the genetic details of the variation can constrain adaptation. In the simplest case, unlinked loci and uncorrelated phenotypes respond directly to multivariate selection and permit unrestricted paths to adaptive peaks. By contrast, 'antagonistic' pleiotropic loci may constrain adaptation by affecting variation of many traits and limiting the direction of trait correlations to vectors that are not favoured by selection. However, certain pleiotropic configurations may improve the conditions for adaptive evolution. Here, we present evidence that the Arabidopsis thaliana gene FRI (FRIGIDA) exhibits 'adaptive' pleiotropy, producing trait correlations along an axis that results in two adaptive strategies. Derived, low expression FRI alleles confer a 'drought escape' strategy owing to fast growth, low water use efficiency and early flowering. By contrast, a dehydration avoidance strategy is conferred by the ancestral phenotype of late flowering, slow growth and efficient water use during photosynthesis. The dehydration avoidant phenotype was recovered when genotypes with null FRI alleles were transformed with functional alleles. Our findings indicate that the well-documented effects of FRI on phenology result from differences in physiology, not only a simple developmental switch

    Neurovestibular Effects of Long-Duration Spaceflight: A Summary of Mir-Phase 1 Experiences

    Get PDF
    Space motion sickness and associated neurovestibular dysfunction though not completely understood - have been relatively well clinically and operationally characterized on short-duration (1-2 week) Space Shuttle missions (Oman, et al, 1984, 1986; Thornton, et al, 1987; Reschke, et al, 1994). Between March 1995 and June 1998, seven NASA astronauts flew on the Russian Mir space station, as "Phase 1" of the joint effort to build the International Space Station, and provided NASA with invaluable experience on the operational and biomedical problems associated with flights of up to six months in duration. The goal of this paper is to provide a summary of the available information on neurovestibular dysfunction, space motion sickness, and readaptation to Earth's gravity on the NASA Mir flights, based on a set of medical questionnaire data, transcripts, and interviews which are available from the NASA-Mir Phase I program. Records were incomplete and anecdotal. All references to specific crewmembers have been removed, to respect their individual privacy. Material was excerpted from multiple sources of information relating to neurologic function, sensory illusions and motion sickness of NASA-Mir Phase I Program crewmembers. Data were compiled by epoch (in-flight vs landing/postflight) and grouped by neurovestibular topic. The information was recorded either contemporaneously during or within days after landing, or retrospectively weeks to months later. Space motion sickness symptoms are more intense and longer in duration. Sense of spatial orientation takes at least a month to become "natural and instinctive" in space station structures, but mental survey knowledge is apparently not completely developed even after 3 months in some cases. Visual reorientation illusions (VRI) are more easily induced after long exposure to weightlessness. Head movements can cause illusory spinning sensations for up to 7 days postflight. Postural and balance control does not fully recover for at least a month postflight

    Octet baryon electromagnetic form factors in nuclear medium

    Get PDF
    We study the octet baryon electromagnetic form factors in nuclear matter using the covariant spectator quark model extended to the nuclear matter regime. The parameters of the model in vacuum are fixed by the study of the octet baryon electromagnetic form factors. In nuclear matter the changes in hadron properties are calculated by including the relevant hadron masses and the modification of the pion-baryon coupling constants calculated in the quark-meson coupling model. In nuclear matter the magnetic form factors of the octet baryons are enhanced in the low Q2Q^2 region, while the electric form factors show a more rapid variation with Q2Q^2. The results are compared with the modification of the bound proton electromagnetic form factors observed at Jefferson Lab. In addition, the corresponding changes for the bound neutron are predicted.Comment: Version accepted for publication in J.Phys. G. Few changes. 40 pages, 14 figures and 8 table

    Oxygen isotope analyses of Equus teeth evidences early Eemian and early Weichselian palaeotemperatures at the Middle Palaeolithic site of Neumark-Nord 2, Saxony-Anhalt, Germany

    Get PDF
    We thank Annabell Reiner (MPI-EVA) for technical and practical support with preparation of samples and Bernd Steinhilber for the oxygen isotope measurements of the silver phosphate samples at the Institut für Geowissenschaften (Universität Tübingen); Thanks to the Landesamt für Denkmalpflege und Archäologie, Sachsen-Anhalt, and Landesmuseum Sachsen-Anhalt in Halle for providing samples; and to Geoff Smith (RGZM Monrepos and MPI-EVA) for comments on earlier versions of this manuscript. Financial support for the Neumark-Nord 2 excavations was provided by the Lausitzer Mitteldeutsche Braunkohlengesellschaft mbH, the Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt (Harald Meller, Susanne Friederich), the Römisch-Germanisches Zentralmuseum Mainz, the Leids Universiteits Fonds “Campagne voor Leiden” program and the NetherlandsOrganization for Scientific Research (N.W.O.). The isotope research was funded by the Max Planck Institute and a Deutscher Akademischer Austausch Dienst Junior Research Grant to KB (ref: A0970923). Thanks also to the University of Aberdeen, and The Leverhulme Trust (RPG-2017-410) for financial and professional support during this project and preparation of the manuscript. TT acknowledges funding by the German National Science foundation in the framework of the Emmy Noether Program (DFG grant TU 148/2-1 “Bone Geochemistry”).Peer reviewedPostprin

    Gene transfer: anything goes in plant mitochondria

    Get PDF
    Parasitic plants and their hosts have proven remarkably adept at exchanging fragments of mitochondrial DNA. Two recent studies provide important mechanistic insights into the pattern, process and consequences of horizontal gene transfer, demonstrating that genes can be transferred in large chunks and that gene conversion between foreign and native genes leads to intragenic mosaicism. A model involving duplicative horizontal gene transfer and differential gene conversion is proposed as a hitherto unrecognized source of genetic diversity
    corecore