18,686 research outputs found

    Transient heat and mass transfer analysis of supercritical cryogenic storage systems with spherical static heaters Final report

    Get PDF
    Transient heat and mass transfer analysis of supercritical cryogenic storage systems with spherical static heaters by computer progra

    Nonlinear double-diffusive intrusions at the equator

    Get PDF
    Previous, linear analysis has suggested that observations of interleaving, quasi-horizontal layers in the equatorial oceans may be explained by double-diffusive or inertial instability. Here we describe an idealized, two-dimensional, numerical investigation of the nonlinear development of these instabilities, focusing almost exclusively on the double-diffusive case. We consider the mechanisms for equilibration and maintenance of the interleaving intrusions and perform a thorough sensitivity analysis. Nonlinearity arising from changes in diffusive regime is found to be more important than advective nonlinearity in promoting global equilibration. When variations in effective flux ratio are weak, local constraints prevent equilibration until large amplitudes are reached. When variations in flux ratio with density ratio are allowed, small-scale staircase and mesoscale intrusive instabilities coexist, leading to staircase-like intrusions with sharp, steppy interfaces. Solutions are found to equilibrate at between 3 and 13 times the amplitude where mean salinity gradients overturn. Cross-equatorial diffusivities between 20 and 400 m2 s-1 are found in realistic cases with intrusion lengths of up to 40 km. A modified estimate of the effective cross-equatorial diffusivity based on a balance of lateral advection and vertical diffusion tends to overestimate the sensitivity to the mean horizontal and vertical gradients of salinity and underestimates the sensitivity to the vertical diffusivity but does give values within an order of magnitude of those derived from numerical experiments. For comparison, we give a single example of inertially driven interleaving layers which reach 190 km in length giving cross-equatorial heat fluxes four times larger than realistic doublediffusively driven cases. Although the inertial case is not considered in detail, we speculate that observed interleaving is more likely to be created by inertial than double-diffusive instability

    The effect of parallel static and microwave electric fields on excited hydrogen atoms

    Get PDF
    Motivated by recent experiments we analyse the classical dynamics of a hydrogen atom in parallel static and microwave electric fields. Using an appropriate representation and averaging approximations we show that resonant ionisation is controlled by a separatrix, and provide necessary conditions for a dynamical resonance to affect the ionisation probability. The position of the dynamical resonance is computed using a high-order perturbation series, and estimate its radius of convergence. We show that the position of the dynamical resonance does not coincide precisely with the ionisation maxima, and that the field switch-on time can dramatically affect the ionisation signal which, for long switch times, reflects the shape of an incipient homoclinic. Similarly, the resonance ionisation time can reflect the time-scale of the separatrix motion, which is therefore longer than conventional static field Stark ionisation. We explain why these effects should be observed in the quantum dynamics. PACs: 32.80.Rm, 33.40.+f, 34.10.+x, 05.45.Ac, 05.45.MtComment: 47 pages, 20 figure

    A shallow water ferrous-hulled shipwreck reveals a distinct microbial community.

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY).Shipwrecks act as artificial reefs and provide a solid surface in aquatic systems for many different forms of life to attach to, especially microbial communities, making them a hotspot of biogeochemical cycling. Depending on the microbial community and surrounding environment, they may either contribute to the wreck’s preservation or deterioration. Even within a single wreck, preservation and deterioration processes may vary, suggesting that the microbial community may also vary. This study aimed to identify the differences through widespread sampling of the microbial communities associated with the Pappy Lane shipwreck (NC shipwreck site #PAS0001), a shallow water ferrous-hulled shipwreck in Pamlico Sound, North Carolina to determine if there are differences across the wreck as well as from its surrounding environment. Loose shipwreck debris, drilled shipcores, surrounding sediment, and seawater samples were collected from the Pappy Lane shipwreck to characterize the microbial communities on and around the shipwreck. Results indicated that the shipwreck samples were more similar to each other than the surrounding sediment and aquatic environments suggesting they have made a specialized niche associated with the shipwreck. There were differences between the microbial community across the shipwreck, including between visibly corroded and non-corroded shipwreck debris pieces. Relative abundance estimates for neutrophilic iron-oxidizing bacteria (FeOB), an organism that may contribute to deterioration through biocorrosion, revealed they are present across the shipwreck and at highest abundance on the samples containing visible corrosion products. Zetaproteobacteria, a known class of marine iron-oxidizers, were also found in higher abundance on shipwreck samples with visible corrosion. A novel Zetaproteobacteria strain, Mariprofundus ferrooxydans O1, was isolated from one of the shipwreck pieces and its genome analyzed to elucidate the functional potential of the organism. In addition to iron oxidation pathways, the isolate has the genomic potential to perform carbon fixation in both high and low oxygen environments, as well as perform nitrogen fixation, contributing to the overall biogeochemical cycling of nutrients and metals in the shipwreck ecosystem. By understanding the microbial communities associated with shallow water ferrous-hulled shipwrecks, better management strategies and preservation plans can be put into place to preserve these artificial reefs and non-renewable cultural resources.ECU Open Access Publishing Support Fun

    Step Position Distributions and the Pairwise Einstein Model for Steps on Crystal Surfaces

    Full text link
    The Pairwise Einstein Model (PEM) of steps not only justifies the use of the Generalized Wigner Distribution (GWD) for Terrace Width Distributions (TWDs), it also predicts a specific form for the Step Position Distribution (SPD), i.e., the probability density function for the fluctuations of a step about its average position. The predicted form of the SPD is well approximated by a Gaussian with a finite variance. However, the variance of the SPD measured from either real surfaces or Monte Carlo simulations depends on Δy\Delta y, the length of step over which it is calculated, with the measured variance diverging in the limit Δy\Delta y \to \infty. As a result, a length scale LWL_{\rm W} can be defined as the value of Δy\Delta y at which the measured and theoretical SPDs agree. Monte Carlo simulations of the terrace-step-kink model indicate that LW14.2ξQL_{\rm W} \approx 14.2 \xi_Q, where ξQ\xi_Q is the correlation length in the direction parallel to the steps, independent of the strength of the step-step repulsion. LWL_{\rm W} can also be understood as the length over which a {\em single} terrace must be sampled for the TWD to bear a "reasonable" resemblence to the GWD.Comment: 4 pages, 3 figure

    AGN and starbursts at high redshift: High resolution EVN radio observations of the Hubble Deep Field

    Get PDF
    We present deep, wide-field European VLBI Network (EVN) 1.6 GHz observations of the Hubble Deep Field (HDF) region with a resolution of 0.025 arcseconds. Above the 210 microJy/beam (5sigma) detection level, the EVN clearly detects two radio sources in a field that encompasses the HDF and part of the Hubble Flanking Fields (HFF). The sources detected are: VLA J123644+621133 (a z=1.013, low-luminosity FR-I radio source located within the HDF itself) and VLA J123642+621331 (a dust enshrouded, optically faint, z=4.424 starburst system). A third radio source, J123646+621404, is detected at the 4sigma level. The VLBI detections of all three sources suggest that most of the radio emission of these particular sources (including the dusty starburst) is generated by an embedded AGN.Comment: 4 pages, 1 figure; Accepted by Astron. & Astrophys Letters ... See http://www.nfra.nl/~mag/hdf_evn.htm

    The One-loop Open Superstring Massless Five-point Amplitude with the Non-Minimal Pure Spinor Formalism

    Get PDF
    We compute the massless five-point amplitude of open superstrings using the non-minimal pure spinor formalism and obtain a simple kinematic factor in pure spinor superspace, which can be viewed as the natural extension of the kinematic factor of the massless four-point amplitude. It encodes bosonic and fermionic external states in supersymmetric form and reduces to existing bosonic amplitudes when expanded in components, therefore proving their equivalence. We also show how to compute the kinematic structures involving fermionic states.Comment: 38 pages, harvmac TeX, v2: fix typo in (4.2) and add referenc

    A Precision Calculation of the Next-to-Leading Order Energy-Energy Correlation Function

    Get PDF
    The O(alpha_s^2) contribution to the Energy-Energy Correlation function (EEC) of e+e- -> hadrons is calculated to high precision and the results are shown to be larger than previously reported. The consistency with the leading logarithm approximation and the accurate cancellation of infrared singularities exhibited by the new calculation suggest that it is reliable. We offer evidence that the source of the disagreement with previous results lies in the regulation of double singularities.Comment: 6 pages, uuencoded LaTeX and one eps figure appended Complete paper as PostScript file (125 kB) available at: http://www.phys.washington.edu/~clay/eecpaper1/paper.htm

    Advancing the Evidence Base of Sport for Development: A New Open-Access, Peer-Reviewed Journal

    Full text link
    We are pleased to release the first edition of the Journal of Sport for Development (JSFD) and we would like to take this opportunity to briefly describe its origins and objectives. In doing so, we endeavour to clarify for researchers, implementers, funders and policy-makers how we believe JSFD fits into the expanding sport for development (SFD) landscape. It is widely accepted that the United Nations International Year of Sport and Physical Education (IYSPE) in 2005 was an advocacy success and sparked a mass expansion in the SFD sector.1 This built on several previous international resolutions that recognised recreational play as a human right and emphasised the social potential of sport.2-9 Over the last decade, SFD has enjoyed widespread and international growth, in terms of resources, constituents, and public awareness.10 During this period several entities have attempted to define and demarcate the SFD sector. We believe that establishing a common definition is a critical step towards unifying a diverse range of stakeholders, many of which separately articulate the role of sport for social change and peace. However, we prefer to view these areas as integral parts of the sector and have adapted a previously described broad and inclusive definition for SFD

    Effects of augmented exercise therapy time after stroke: a meta-analysis

    Get PDF
    <p><b>Background and Purpose:</b> To present a systematic review of studies that addresses the effects of intensity of augmented exercise therapy time (AETT) on activities of daily living (ADL), walking, and dexterity in patients with stroke.</p> <p><b>Summary of Review:</b> A database of articles published from 1966 to November 2003 was compiled from MEDLINE, CINAHL, Cochrane Central Register of Controlled Trials, PEDro, DARE, and PiCarta using combinations of the following key words: stroke, cerebrovascular disorders, physical therapy, physiotherapy, occupational therapy, exercise therapy, rehabilitation, intensity, dose–response relationship, effectiveness, and randomized controlled trial. References presented in relevant publications were examined as well as abstracts in proceedings. Studies that satisfied the following selection criteria were included: (1) patients had a diagnosis of stroke; (2) effects of intensity of exercise training were investigated; and (3) design of the study was a randomized controlled trial (RCT). For each outcome measure, the estimated effect size (ES) and the summary effect size (SES) expressed in standard deviation units (SDU) were calculated for ADL, walking speed, and dexterity using fixed and random effect models. Correlation coefficients were calculated between observed individual effect sizes on ADL of each study, additional time spent on exercise training, and methodological quality. Cumulative meta-analyses (random effects model) adjusted for the difference in treatment intensity in each study was used for the trials evaluating the effects of AETT provided. Twenty of the 31 candidate studies, involving 2686 stroke patients, were included in the synthesis. The methodological quality ranged from 2 to 10 out of the maximum score of 14 points. The meta-analysis resulted in a small but statistically significant SES with regard to ADL measured at the end of the intervention phase. Further analysis showed a significant homogeneous SES for 17 studies that investigated effects of increased exercise intensity within the first 6 months after stroke. No significant SES was observed for the 3 studies conducted in the chronic phase. Cumulative meta-analysis strongly suggests that at least a 16-hour difference in treatment time between experimental and control groups provided in the first 6 months after stroke is needed to obtain significant differences in ADL. A significant SES supporting a higher intensity was also observed for instrumental ADL and walking speed, whereas no significant SES was found for dexterity.</p> <p><b>Conclusion:</b> The results of the present research synthesis support the hypothesis that augmented exercise therapy has a small but favorable effect on ADL, particularly if therapy input is augmented at least 16 hours within the first 6 months after stroke. This meta-analysis also suggests that clinically relevant treatment effects may be achieved on instrumental ADL and gait speed.</p&gt
    corecore