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Abstract

Previous, linear analysis has suggested that observations of interleaving, quasi-

horizontal layers in the equatorial oceans may be explained by double-diffusive or iner-

tial instability. Here we describe an idealized, two-dimensional, numerical investigation

of the nonlinear development of these instabilities, focusing almost exclusively on the

double-diffusive case. We consider the mechanisms for equilibration and maintenance

of the interleaving intrusions and perform a thorough sensitivity analysis. Nonlinearity

arising from changes in diffusive regime is found to be more important than advective

nonlinearity in promoting global equilibration. When variations in effective flux ratio

are weak, local constraints prevent equilibration until large amplitudes are reached.

When variations in flux ratio with density ratio are allowed, small-scale staircase and

mesoscale intrusive instabilities coexist, leading to staircase-like intrusions with sharp,

steppy interfaces. Solutions are found to equilibrate at between 3 and 13 times the

amplitude where mean salinity gradients overturn. Cross-equatorial diffusivities be-

tween 20 and 400 m2 s−1 are found in realistic cases with intrusion lengths of up to 40

km. A modified estimate of the effective cross-equatorial diffusivity based on a balance

of lateral advection and vertical diffusion tends to overestimate the sensitivity to the

mean horizontal and vertical gradients of salinity and underestimates the sensitivity

to the vertical diffusivity but does give values within an order of magnitude of those

derived from numerical experiments.

For comparison, we give a single example of inertially driven interleaving layers

which reach 190 km in length giving cross-equatorial heat fluxes 4 times larger than

realistic double-diffusively driven cases. Although the inertial case is not considered in

detail, we speculate that observed interleaving is more likely to be created by inertial

than double-diffusive instability.

1 Introduction

Observations of interleaving, quasi-horizontal layers with contrasting salinities and temper-
atures in the equatorial Pacific thermocline have been reported by several authors includ-
ing Toole (1981), McPhaden (1985), Richards and Pollard (1991) and Richards and Banks
(2002). Typically the layers are a few tens of metres thick and are found within a few degrees
of the equator. The meridional extent of the intrusions is of the order of 100 km. Their
extent in the zonal direction, along the equator, has been found to be in excess of 700 km
(Lee and Richards 2004). The equatorial Pacific is characterized by strong mean northward
thermohaline gradients as well as an active and complicated mean current system, including
the equatorial undercurrent. Conditions are often favourable for microscale double-diffusive
fingering, and mesoscale double-diffusive interleaving instabilities, of the type first described
by Stern (1967), as well as inertial (or symmetric) instability, the theory of which goes back
to Rayleigh (1916). Both of these mechanisms have been proposed as possible explanations of
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observed equatorial processes, in particular Richards (1991) extended linear double-diffusive
interleaving theory to the equatorial β-plane and Hua et al. (1997) proposed inertial in-
stability as an explanation for deep equatorial jets, while Edwards and Richards (1999)
developed a combined linear theory of double diffusive-inertial instability for the equatorial
β-plane. Richards and Banks (2002), who consider an extensive set of measurements, find
that the observed interleaving is consistent with both double-diffusive interleaving and iner-
tial instability. Based on observations alone, they were unable to discriminate between the
two mechanisms.
Here we strive to assess which of these mechanisms is likely to be dominant using a

modelling approach. This requires that we model the nonlinear development of instabilities
and attempt to estimate their likely amplitude in the fully-developed state. In the present
paper we consider the double-diffusive mechanism in detail, modelling the growth and non-
linear equilibration of instabilties, and perform a thorough sensitivity analysis. We retain an
idealized framework, considering only periodic, 2-dimensional disturbances to a background
state with uniform mean gradients.
To model the nonlinear development of thermohaline intrusions it is necessary to use

a parameterization of unresolved fluxes which appropriately handles stable and unstable
stratifications which are not favourable to double diffusion, in addition to double diffusion-
favourable stratification in both the fingering and diffusive regimes. The simplest option
is to switch discontinuously between 4 different, constant diffusivities, depending on the
background stratification. To avoid the awkward terminology “diffusive double-diffusive
regime” we refer to the fingering and diffusive regimes by the relevant stabilizing vertical
gradient, as “T-stable” or “S-stable” respectively.
In the one-dimensional case McDougall (1985) showed that steady-state interleaving

states might exist if the flux ratio varied in the vertical, a situation which he assumed to
be due to the coexistence of finger and diffusive interfaces. Following McDougall (1985),
Walsh and Ruddick (1998) showed that the coexistence of finger and diffusive interfaces was
necessary for equilibrium in their one-dimensional system, even though the effective flux ratio
could vary within fingering or diffusive regions due to the linear combination of double-
diffusive and turbulent fluxes. If the diffusivities are assumed to be separately constant
within the T-stable and S-stable regions, then in the one-dimensional case, the change in
diffusivity at the boundaries of different stability regions is the only source of nonlinearity.
Hence there must be at least two regions for the system to behave in a nonlinear way, a
fortiori there must be more than one type of region in any equilibrium solution. In two or
more dimensions this is not necessarily true.
After presenting our model in the next section, we discuss the equilibration and mainte-

nance of intrusions. We then attempt to determine what limits their growth and ultimately
sets their amplitude, first comparing advective and diffusive nonlinearity (the latter normally
a result of regime changes resulting from overturning of vertical gradients) then considering
the generic effect of regime changes at opposing interfaces. We then perform a sensitivity
analysis, relying on several simplifying concepts to identify the most fundamental indepen-
dent parameters amongst the vast range of possible variables. Variations in diffusivity and
flux ratio are also considered in a generalized and simplified sense, and the importance of
both local and global constraints on equilibration investigated. In the final sections of the pa-
per we consider the potential amplitude of double-diffusively driven interleaving for realistic
parameters, using our earlier results to identify optimal parameters for maximal amplitude,
and exhibit a single example simulation of an inertially unstable case for comparison. On
the basis of our results, we speculate that double diffusion is unlikely to be the primary
mechanism for the formation of the observed interleaving.
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2 Governing equations and boundary conditions

Neglecting variations in the eastward, (x) direction, the two-dimensional flow (v, w) in a
northward-vertical (y, z) plane can be represented by a streamfunction χ such that

v = −
∂χ

∂z
, w =

∂χ

∂y
. (1)

We make the β-plane assumption that the Coriolis parameter f = βy, but retain non-
hydrostatic vertical acceleration. The governing equation for the zonal (x) component of
vorticity, ∇2χ, is then taken to be

∂

∂t
∇
2χ = −J(χ,∇2χ) + f

∂u

∂z
−

g

ρ0

∂ρ

∂y
+ νy

∂2

∂y2
∇
2χ+ νz

∂2

∂z2
∇
2χ− r∇2χ, (2)

where the Jacobian J represents advection associated with the streamfunction χ. The
equations for zonal velocity u, temperature T and salinity S are

∂u

∂t
= −J(χ, u)− f

∂χ

∂z
+ νy

∂2

∂y2
u+ νz

∂2

∂z2
u− ru, (3)

∂T

∂t
= −J(χ, T ) + κy

∂2

∂y2
T − r(T − T )−

∂

∂z
FT , (4)

∂S

∂t
= −J(χ, S) + κy

∂2

∂y2
S − r(S − S)−

∂

∂z
FS , (5)

and the equation of state is
ρ = ρ0(δS − αT ), (6)

where α and δ are the thermal expansion and saline contraction coefficients, which are
assumed to be constant. An overbar denotes the background state and ρ0 is a constant
reference density. The y and z-components νy and νz of viscosity and the y-component
of diffusvity κy are also assumed to be constant. We allow for a Rayleigh drag term with
constant coefficient r following Hua et al. (1997) (our numerical code is a slightly modified
version of the code used by these authors). Since r does not act preferentially on small
scales it is best viewed as representing unresolved large-scale forces maintaining the initial,
unstable state. The drag term is usually small, and its effect is discussed in Section 5(e). For
runs with realistic parameters described in Section 6 we set r = 0 for ease of interpretation.
To parameterize the unresolved vertical fluxes of temperature and salinity FT and FS ,

we adopt a simplified form of the parameterization of Walsh and Ruddick (1998), as follows:
fluxes FQ, where Q = T or S, will be deemed to have a contribution from double diffusion
and shear-driven turbulence;

FQ = DQ +KQ

where, in the T-stable, fingering regime 0 < ∂T/∂z, 0 < ∂S/∂z, ∂ρ/∂z < 0,

DS = −AF
∂S

∂z
,DT = −γF

δ

α
AF

∂S

∂z
. (7)

In the S-stable regime, ∂T/∂z < 0, ∂S/∂z < 0, ∂ρ/∂z < 0, the roles of T and S are reversed,

DS = −
α

δ
AD

∂T

∂z
,DT = −γDAD

∂T

∂z
. (8)

Thus, in our notation, γ is always the ratio of heat to salt flux, γ = αDT /(δDS). If the fluid
is fully stable 0 < ∂T/∂z, ∂S/∂z < 0, ∂ρ/∂z < 0, or statically unstable 0 < ∂ρ/∂z, then
DS = DT = 0. The turbulent part is given by

KS = −κ
∂S

∂z
,KT = −κ

∂T

∂z
, (9)
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where the diffusivity κ = κs, for stable stratification and κ = κu, for unstable stratification.
Default values of coefficients are given in Table 1. For the diffusive terms we follow Walsh
and Ruddick (1998). The diffusivity of temperature in the S-stable regime (γDAD in our
notation) is thus set equal to the salinity diffusivity AF in the fingering regime unless stated
otherwise. This may well overestimate AD, a possibility which we consider in Section 4(b).
Solutions are assumed to be periodic in the vertical and to decay with distance away

from the equator. The domain height is set to the vertical wavelength of the most unstable
linear mode according to the theory of Edwards and Richards (1999). The background
state is initially motionless, with linear variations of temperature and salinity in the vertical
and meridional directions such that the density varies only in the vertical. Integrations
are initialized by adding a small perturbation to the salinity field with the approximate
form of the most unstable linear mode. We solve the equations numerically using a second-
order finite difference method with, typically, 100 points in y and 40 points in z. Diffusion
terms are lagged. To solve the Poisson equation for the streamfunction we use an exact
semi-spectral method with a Fourier decomposition in the vertical direction.

3 Nonlinear equilibration

In order to perform a thorough sensitivity analysis we need to choose a set of default param-
eters for which steady solutions can readily be found in a sufficiently large neighbourhood.
This is not a trivial problem, and we are forced to use default parameters which are some-
what different from those observed. This is perhaps inevitable, with foreknowledge of our
ultimate conclusions. In Section 5 we rely on the understanding we have gained of the
controlling mechanisms of interleaving to apply our results to more physically relevant pa-
rameter regimes. The parameters used and their default settings are given in Table 1. In
this and the following sections we investigate the non-linear behaviour of double-diffusively
driven intrusions. The parameter space is explored by varying those parameters which are
found to be key to the development of the intrusions, and by eliminating certain physical
processes in the equations. The details of the various experiments we report on here are
given in Table 2 and the gross characteristics of the model solutions (cross-equatorial heat
flux, intrusion length and amplitude) given in Table 3. We define the intrusion length l as
the maximum lateral displacement of a contour of total salinity, see figure 1 for a schematic
representation of interleaving structure and a graphical definition of l.
Using the default parameters of Table 1 the initial, exponential growth of the disturbance

ultimately slows and a quasi-steady state is attained around 400 days into the simulation.
Figure 2 shows the development of the maximum values of the zonal velocity and density per-
turbation during the simulation. Also plotted are the minimum values of vertical gradients
of temperature and salinity and the maximum value of the vertical density gradient. Initially
the vertical temperature and salinity gradients are everywhere positive, corresponding to the
double-diffusive fingering-favourable (T-stable) background state. From the graph, salinity
gradients overturn before temperature gradients, giving fully stable regions which persist in
the final state, surrounding a region of double-diffusive convection in the diffusive or S-stable
regime. In this run, which we will refer to as run S, no statically unstable regions develop.
Perturbation fields of temperature, salinity, density, streamfunction and zonal velocity are
shown in figure 3. Also shown is the total salinity field which remains dominated by the
variation in the background state. The intrusion length is thus relatively small, while the
large and uniform background gradients in our idealized scenario lead to unrealistically large
variations across the domain.
Nonlinear equilibration is brought about by changes in the advection and vertical dif-

fusion terms (the drag and horizontal diffusion terms also damp the instability, but these
terms behave linearly, thus they can only affect the rate at which exponential growth oc-
curs). Advection of the temperature and salinity perturbations by the vortical perturbation
velocity leads to a rotation of the thermohaline fields, the sign of which is such as to flatten
the fingering (T-stable) interface and steepen the diffusive (S-stable) interface. This advec-
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tion pattern results in a reduction of the driving mean meridional thermohaline gradients
in the centre of the disturbance and hence promotes equilibration. We later refer to this
process as the advective equilibration mechanism.
At the S-stable interface where vertical gradients of temperature and salinity have re-

versed relative to the initial condition, double diffusion continues to smooth the temperature
and salinity fields in the vertical, but the effect on density is opposite to that at the finger-
ing interface, thus the S-stable interface exerts a braking effect on the instability, promoting
equilibration. The effect is a reduction in the meridional density gradient and hence the
zonal vorticity. This counteracts the advective tendency to steepen the interface, the gradi-
ent of which is roughly the same in the equilibrated solution as in the linear growth phase.
Changes in diffusive regime thus act as sources of diffusive nonlinearity promoting equili-
bration. In the next Section we compare the relative importance of advective and diffusive
nonlinearity in promoting equilibration. We regard both of these mechanisms as global con-
straints on equilibration since they allow the global structure of the flow to depart from the
exponentially growing linear state. Later, in Section 5(e) we discuss a further constraint on
equilibration which is local in origin. Our distinction between local and global thus refers
to the origin of the mathematical constraint, rather than to any distinction of physical pro-
cesses or timescales. For a global equilibrium solution, both types of constraint must be
satisfied.
We define an effective cross-equatorial diffusivity of heat κeff as the average advective

heat flux across the equator divided by the mean thermal gradient specified in the initial
condition. In the final state of run S the effective diffusivity is 107 m2 s−1.
Examination of the energy budget for the disturbance shows that the steady-state inter-

leaving in this default solution is artificially sustained by the periodic boundary conditions in
the vertical. However, very similar solutions are obtained in vertically much larger domains
where the influence of the boundaries on the layers in the centre of the domain is small (run
XPF in Table 2. In such cases a quasi-steady state can be maintained for at least 5 years
(our longest simulation) by a steady reduction in the potential energy of the background
state. Mean vertical gradients of T and S steadily reduce in these simulations, and there is
a slow decrease in wavenumber of around 5% per year.

4 Amplitude of nonlinear intrusions

a. Advective versus diffusive nonlinearity. Because the amplitude of the steady-state in-
terleaving ultimately determines the magnitude of the resulting effect on the large-scale
flow, it is essential to understand what sets this amplitude. As discussed in Section 3, ei-
ther advection or diffusion could provide the global source of nonlinearity (the latter via
regime changes) required to limit exponential growth and promote equilibration. Changes
in flux ratios, as discussed by Walsh and Ruddick (1998), provide a further constraint on
equilbriation which is local in origin. We discuss this local constraint in Section 5(e).
The relative importance of advective and diffusive nonlinearity can be addressed by

suppressing various terms in the governing equations. When all advective nonlinearity is
suppressed (run D), the resulting steady state is of similar amplitude to run S. In contrast,
when advective nonlinearity is retained, but diffusive regime changes are suppressed (run A),
a steady state around 4.5 times larger is obtained, with an effective diffusivity of 1200 m2

s−1 and intrusive features of length around 80 km clearly visible in the total salinity field. It
turns out that even in this latter run it is the overturning of the vertical density field which
controls the amplitude of the final solution via nonhydrostatic effects. The salinity gradient
overturns in the linear solution when the perturbation salinity gradient, with amplitude
mS′, equals the mean gradient ∆S/H, where m = 2π/H is the vertical wavenumber. Thus
if we define a dimensionless disturbance amplitude a = 2πS ′/∆S then a is the ratio of
the salinity perturbation amplitude to the amplitude at overturning. Peak values of a are
given in Table 3. For runs S and D, a reaches about 3, while in run A, a reaches 14. When
nonhydrostatic effects and diffusive regime changes are removed (run AH), so that the system
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has no knowledge of the background gradients, oscillatory solutions are obtained in which
advective nonlinearity leads to a complete removal of the driving thermohaline gradients,
which are then slowly reestablished by drag or diffusion terms. Advective nonlinearity
is thus sufficient to cause equilibration, eventually limiting the dimensionless amplitude to
around 20, but diffusive regime changes control the steady-state amplitude unless unphysical
diffusive parameters are specified.

b. The limit of weak braking at the opposite interface. The full specification of the diffusivity
in each of the different diffusive regimes involves a large number of parameters, but the
above results suggest that we may make progress by considering an important limiting case.
The symmetry of the double-diffusive flux parameterisations implies that the formation of
the opposing double-diffusive interface (here the S-stable regime) after the overturning of
the mean gradients always exerts a braking effect on the growth of the instability. We
can define a limiting case of weak braking at the opposite interface either by setting the
flux ratio γD in the S-stable regime to 1, corresponding to normal diffusion with vanishing
double-diffusive interleaving growth rate, or by removing double-diffusive fluxes altogether
at that interface, setting AD = 0. It turns out that the latter case (run WB in Tables 2
and 3) is more interesting, equilibrating at more than double the dimensionless amplitude
of the standard run S with more than 4 times the (quadratic) cross-equatorial heat flux and
much greater intrusion length (an intermediate result is obtained by simply setting γD = 1).
The equilibration of run WB is qualitatively similar to the standard run S, although much
more negative vertical gradients of T and S are achieved, since with AD = 0 the system
is unable to extract the potential energy of the unstable temperature gradient. ∂T/∂z and
∂S/∂z reach -0.115 K/m and -0.13 psu/m respectively in run WB as against -0.012 K/m
and -0.052 psu/m in run S. However, the total density still does not quite overturn in run
WB, although the density gradient reaches -0.0025 kg/m4, a quarter of the maximum value
in run S.
The braking effect of the opposite interface in our standard case therefore has a significant

limiting effect on the final amplitude of the interleaving. However, the weak-braking result
is conceptually useful in providing an upper bound on the possible amplitude of solutions
for any form of double diffusive flux parameterisation in the S-stable regime. Although
weak braking results in much greater amplitude, a = 8.4 in run WB while a = 3.1 for
run S, this is still significantly smaller than the value of a = 21 found in run AH with no
diffusive nonlinearity at all. Thus even for arbitrarily weak double-diffusive braking at the
opposite interface the steady-state amplitude is still strongly controlled by the nonlinear
diffusive effect of the change in our flux parameterisation between the remaining stability
regimes. In view of these results we can obtain at least order-of-magnitude bounds on the
possible amplitude of equilibrated layering instabilities by varying only the behaviour at the
dominant interface, in particular, the influence of the initial values of mean gradients and
hence the amplitude of the instability at the point at which they overturn.

5 Parameter sensitivity

To understand the sensitivity of the intrusion amplitude to the wide variety of parameters
involved, it is helpful to clarify the problem somewhat. In principle, we need to consider the
effect of all the independent parameters which affect amplitude. The amplitude is governed
by nonlinear processes, since the linear problem leads only to exponential growth or decay.
Thus we can ignore, at least initially, the small parameters νy and r representing lateral
diffusion and Rayleigh drag. These affect the linear growth and may have an effect at
very long timescales, but since they act linearly, they are unlikely to significantly affect the
amplitude at which the intrusions first equilibrate (the turbulent diffusivity κs, although
linear, has a potentially greater effect for reasons discussed later).
Analysis of the linear problem reveals that it depends on only 4 dimensionless parameters;
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the thermohaline gradients in the horizontal and vertical directions, the Schmidt number
σ = ν/A and a number representing the relative effects of rotation and vertical diffusivity
given by

s =
β2A

N3
.

The buoyancy frequency N simply sets the overall timescale for the problem and is not
independent of the other parameters. We continue to present our results in dimensional
form, but restrict ourselves henceforth to a consideration of the independent parameters σ
and diffusivity A (in lieu of s), in addition to the effects of the mean thermohaline gradients
and the form of the double-diffusive fluxes. With N fixed, variations in vertical salinity
gradient are equivalent to variations in the density ratio Rρ = (α∂T/∂z)/(δ∂S/∂z).

a. Background gradients. The results of the previous sections suggest that an increase in
the vertical salinity gradient should result in larger fluxes assuming that the equilibrium
dimensionless amplitude is roughly unchanged. This is indeed the case, as can be seen from
the results of run SZ in Table 3. Since we maintain a constant value for the vertical density
gradient, doubling the salinity gradient leads to a smaller increase, by a factor around 1.4, in
the temperature gradient. The dimensionless amplitude is somewhat smaller, 2.3 as against
3.1 in run S, the maximum density perturbation being 1.5 times larger and the (quadratic)
heat flux being 2.4 times larger. However, the intrusion length is still small, around 30 km.
Note that increasing ∂S/∂z amounts to reducing the initial density ratio R0. R0 = 1.89 in
run SZ as compared to 2.78 in run S.
Doubling the lateral salinity gradient increases the dimensionless amplitude to 5.2 and

increases the heat flux and density perturbation but results in smaller effective diffusivity
κeff and intrusion length l, see run SY in Table 3. This run equilibrated in two stages and
has a slightly more complex spatial structure in the steady state (not shown).

b. Prandtl/Schmidt number. Linear analytical solutions found by Richards (1991) show
that the initial growth rate of double-diffusive intrusions is proportional to σ−1/2, while the
most unstable vertical wavelength is proportional to σ1/2. The amplitude of our nonlinear
steady-state solutions is also dependent on σ. In relation to run S, doubling σ is found to
increase the maximum density perturbation by a factor of 1.17 (run 2S), and to increase
the heat flux by a factor of 1.09. Increasing σ by a factor of 10, however, gives only a 41%
increase in maximum density perturbation and a 10% increase in heat flux.
Thus although increasing σ reduces the growth rate in the linear phase, larger values of

σ ultimately result in larger steady states. For a given amplitude a the amplitude of the
salinity perturbation will be directly proportional to the wavelength. This suggests that
the density perturbation amplitude should also be roughly proportional to the wavelength.
Doubling σ increases the vertical wavelength by 15% while increasing σ by a factor of 10 leads
to a 77% increase. Thus the increase in density perturbation amplitude is largely explained
by the change in vertical wavelength although the heat flux, which would be expected to
be quadratic in the disturbance amplitude, increases less than the density perturbation in
this case. On the other hand the intrusion length increases to 35 km when σ increases by a
factor of 10 while the amplitude a remains close to 3. This increase is probably due to the
increase in horizontal scale of the linear (and nonlinear) solution.

c. Diffusivity/rotation number. For the reasons discussed above we restrict our consideration
of the diffusivity to the dominant, T-stable (fingering) regime. As noted earlier, this amounts
to changing the relative effects of rotation and diffusion. To separate the effects of changing
diffusivity A (or s) and σ, we keep the latter constant. As a first step we consider variations in
the value of A when it is assumed to be spatially constant. On simple dimensional grounds,
in the absence of a dependence on the relevant dimensionless parameter s, increasing A
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should have no effect on the density perturbation while the increase in the heat flux should
be proportional to A1/2. In fact, increasing A by a factor of 2 or 4 gives an even greater
increase in the density perturbation (see Table 3) and the heat flux increases by a factor
of 3.2 or 12.6 respectively. These substantial increases can only partly be explained by the
effect of A on the vertical wavelength, which increases by 15 and 47% respectively in the
two runs.

d. Variable diffusivity. Our greatest uncertainty concerns the true form of the double-
diffusive fluxes. Restricting our consideration (as above) to the dominant, T-stable (fin-
gering) regime we perform a limited investigation of the possible effect of variation of the
fingering diffusivity A with the mean gradient, but we further restrict our attention to qual-
itative variations of A with the density ratio Rρ. The use of eddy diffusivities which vary
with the mean gradient can lead to Phillips-Posmentier type layering instabilities (Posmen-
tier 1977, Balmforth et al. 1998, Walsh and Ruddick 1995b). To avoid the theoretical
possibility of arbitrarily large growth rates at vanishingly small vertical scales, we specify a
diffusivity which varies between two constant values over a finite region. This ensures that
any layering instabilities should at least have a finite maximum steepness. The extent of
uncertainty as to the true variation of A with Rρ is such that formulations have been pro-
posed which differ even with regard to the sign of this variation. Schmitt (1981) proposing
a decrease with Rρ and Kunze (1987, 1994) proposing an increase. In the context of this
uncertainty, we simply compare the effects of specifying formulations for A which increase,
or decrease, at varying rates.
Diffusivity is thus assumed constant everywhere except between two finite limits, R1 and

R2, of Rρ in the T-stable (fingering) regime. We start with the case in which R1 < R2 < R0

in order to avoid modifications to the linear problem (Walsh and Ruddick 1995b). We
also keep constant the turbulent diffusivity κ and the Schmidt number σ, which for the
runs in this section is defined as σ = ν/(AF + κs) in the T-stable (fingering) regime and
σ = ν/(AD + κs) in the S-stable regime.
The diffusivity in T-stable regions is thus defined by

A = A1 : Rρ ≤ R1,

A = A1 + 0.5(A2 −A1)(1− cos(π
Rρ −R1

R2 −R1

)) : R1 < Rρ < R2, (10)

A = A2 : Rρ ≥ R2.

At the fingering-favourable interface in run S, Rρ decreases from its initial value of 2.78 and
attains a minimum value of 1.9 (at the opposite interface Rρ increases and changes sign at
infinity as the mean gradients overturn). To encompass this range of nonlinear variation in
Rρ we set R1 = 1.5 and R2 = 2.5. A2 is set to the value A0 used in run S to give the same
initial linear problem and we consider the 4 cases in which A either increases or decreases
by a factor of 2 or 5 between A1 and A2. We refer to these runs as D+2, D+5, D-2 and D-5
respectively (see Table 4).
The variation of diffusivity in run D+2 is qualitatively as expected. The density ratio

Rρ decreases to a minimum value in the centre of the fingering region, as in run S, and the
diffusivity decreases smoothly to a minimum there. In run D-2 the variation of A is somewhat
more complicated, as shown in figure 4. The diffusivity is larger than its background value
throughout the fingering region, evidencing a reduction in Rρ, but the centre of the fingering
region is a vertical minimum of diffusivity, which increases away from the fingering interface
towards a maximum in the convective regions which surround the S-stable interface. Thus
the vertical variation of Rρ in this run has reversed, with Rρ maximal at the centre of
the fingering region. Both signs of variation of A therefore lead to a minimum of A at the
fingering interface and neither leads to a sharpening of the interfaces. The increased gradient
of the change in A in runs D+5 and D-5 does not change this result. It is therefore not
surprising that the spatial variation of A in these runs does not produce larger amplitude
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interleaving. The two runs D+2 and D+5 in which A increases with Rρ result in steady
states smaller than run S. In runs D+2 and D+5 the diffusivity A decreases with Rρ from a
maximum value which is 2 or 5 times larger than the standard value respectively. Although
these runs produce larger steady states than run S, as detailed in Table 3, the amplitudes of
fluxes and the length of the intrusions are smaller than in the run with constant diffusivity
equal to twice the standard value, run D2. Relaxing the constraint that A be constant
in the linear regime and repeating the above set of runs leads to solutions of similar or
smaller amplitude. There is no evidence from any of the runs described in this section that
variation of A with Rρ, in the absence of other changes, is likely to lead to strong changes
in the equilibrated amplitude of nonlinear intrusions.

e. Turbulent diffusivity and flux ratio. Although the additional turbulent diffusion is a linear
term and is therefore incapable of bringing about global equilibration of the intrusions, it
is a prerequisite for local equilibrium and hence for the existence of steady solutions in
the one-dimensional case considered by Walsh and Ruddick (1998). This is because in
one dimension the ratio of temperature and salinity advection is fixed by the constancy of
gradients along the layers, while the ratio of temperature and salinity diffusion is fixed if the
diffusive flux ratio is a constant. These constant ratios will generally be different and thus
simultaneous equilibrium of both T and S is impossible unless the ratio of diffusive fluxes
is allowed to vary. Variations of the flux ratio γ are known to be important (see below) but
even with γ set to a constant for simplicity, the inclusion of turbulent diffusivity κs allows
the effective flux ratio, γeff (the ratio of total diffusive fluxes of T and S) to vary (Walsh
and Ruddick 1998) and thus removes the obstruction to equilibration. In two dimensions
the ratio of advective terms need not be constant; in the nonlinear phase the temperature,
salinity and streamfunction perturbations in our solutions all have slightly different spatial
structures, thus it is not obvious whether or not steady solutions are theoretically possible
with constant effective flux ratio in two dimensions, although strong constraints exist, for
instance the density ratio Rρ must equal γ throughout any fingering region enclosed by a
single streamline. Given our parameterisation with constant γ, the value of the turbulent
diffusivity κs may therefore have a significant effect on steady solutions, even if it is not
essential for their very existence. If variations in both the advective flux ratio and γeff are
weak then local equilibration may not occur until the solution reaches large amplitude. Note
that this form of local control on the amplitude of solutions is quite separate from the global
requirement of a source of nonlinearity to restrict the initially exponential growth.
In run S, κs has the relatively large value of 10

−5 m2 s−1, or one third of A0. When
κs is halved (run K/2) a smooth steady state obtains which is qualitatively similar to run
S except that convective regions exist in the steady state and the amplitude is around 25%
larger. Referring to Table 3, the sensitivity to κs is thus not particularly strong compared
to the diffusivity A or the thermohaline gradients. However, if κs is reduced by a factor
of 10 or set to zero, the behaviour is rather different. Although solutions equilibrate, the
fluid becomes statically unstable almost everywhere outside of a sharp density jump at the
fingering interface, and a smaller jump at the opposite interface. Although such density
jumps are not resolved by the code, a repeat run with κs = 0 with 4 times the vertical
resolution gave fluxes differing by only 4%, indicating weak sensitivity to the unresolved
layer thickness. In our system we allow for two further dissipative parameters in the T
and S equations (4) and (5); a horizontal diffusivity κy and a Rayleigh drag r. Setting
κs = r = κy = 0 (run T0 in Tables 2 and 3) leads to a solution of considerably larger
amplitude than the κs = 0 case (for which we obtain a = 3.3) even though convection is
almost ubiquitous for small, non-zero κs, κy and r. Indeed the dimensionless amplitude of
run T0, a = 13, is similar to that in run A, where a = 14, although the fluxes and intrusion
lengths remain smaller. Time series of relevant quantities during the equilibration of run T0
are shown in figure 5.
These small diffusive parameters therefore have a powerful effect on the solution ampli-

tude even well beyond the point where convection strongly modifies the effective diffusive
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flux ratio throughout the solution. In run A only advective and convective effects can pro-
mote the global nonlinearity required for equilibration, whereas in run T0 advection and
convection are the only sources of variation in the flux ratios required for local equilibra-
tion. Local and global constraints on equilibration thus appear to be of roughly comparable
importance.
Variations of the flux ratio γ itself may be dynamically important. In direct numerical

simulations of double-diffusive fingering conducted by Radko (2003), the decrease of γ with
density ratio Rρ is shown to be responsible for the spontaneous formation of a system of
convective layers separated by fingering regions, a so-called thermohaline staircase, in the
numerical simulations. Various functional forms for γ(Rρ) have been proposed, see Walsh
and Ruddick (2000) and references therein, sharing the general property that the flux ratio
decreases from a value less than or equal to 1 at Rρ = 1 to a value around 0.5 at Rρ ≈ 4.
Beyond this point the formulations diverge, but it is the lower values of Rρ that are most
important here. Walsh and Ruddick (2000, see also Radko 2003) show that the decrease
of γ can lead to a layering instability for Rρ sufficiently close to 1 and for small values of
additional turbulent diffusivites. We have performed a limited investigation of the effect of
such variations on our solutions using the form derived analytically from salt-finger linear
instablity theory by Stern (1975),

γF = Rρ −

√

Rρ(Rρ − 1). (11)

The effect of using this parameterisation in our standard run is very small. This is not
surprising, since the range of Rρ in run S, from 1.9 to 2.8, corresponds to a very small
range of variation of γF (Rρ) from 0.56 to 0.59. Quantitative changes are slightly larger for
smaller initial values of Rρ, cf run SZ, but qualitatively different behaviour, as compared
with constant γ, was found when the turbulent diffusivity κs was set to zero. In this run,
GR in Tables 2 and 3, variations in flux ratio γ cannot be dominated by variations in ef-
fective diffusive flux ratio due to κs and a two-stage instability process occurs. Small-scale
instability appears first at grid scale, with vertical layers merging to give a system of verti-
cally alternating finger and convection layers, randomly distributed throughout the domain,
around 100 km in lateral extent and around 2.5 m high. This staircase structure does not
appear to inhibit the interleaving instability, although lateral fluxes due to interleaving are
initially suppressed. As the interleaving develops, the convecting layers in the interleaving
region merge to leave a single convecting layer and a single, steppy, fingering interface in
the (vertically periodic) domain. In the final state, cross-equatorial interleaving fluxes are 4
times as large as in the standard run S and twice as large as those obtained simply by setting
κs = 0 without modifying γ. A thorough investigation of such a complex flow, with two
separate scales of instability, is beyond the scope of this study, however, we note that simply
doubling the vertical resolution gave very similar results for the final interleaving amplitude
and for the vertical scale of the staircase throughout most of the run, although the staircase
developed more rapidly in the initial stages. Although we lack the resources to study this
situation thoroughly, our limited investigation supports the suggestion that variations in γ
can lead to the formation of thermohaline staircases, which merge into steppy interfaces in
the presence of mesoscale interleaving instability, possibly enhancing the lateral fluxes due
to the interleaving. The temperature perturbation in run GR is shown in figure 6 after the
development of the staircase structure and in the final state of fully developed interleaving.

6 Interleaving at more realistic parameters

The above results represent a fairly thorough, but essentially idealized, sensitivity study of
the amplitude of steady-state double-diffusively driven equatorial interleaving. In order to
carry out the sensitivity analysis, we were forced to choose a default case at a convenient
position in parameter space, where stable solutions could readily be found in a reasonably
large neighbourhood. These default parameters are rather different from the observational
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estimates of Richards and Banks (2002) corresponding to periods when interleaving was
observed. These authors estimate N 2 = 1.7 × 10−4 s−1, and mean salinity gradients Sy =
1.7 × 10−6 psu m−1 and Sz = 0.002 psu m

−1. A widely quoted estimate for the fingering
diffusivity calculated from observations of meddy Sharon is AF = 3×10

−5 m2 s−1 (Ruddick
and Hebert 1988) but Walsh and Carmack (2003) obtain a much smaller value of 0.8×10−5

m2 s−1 from the large-scale spreading of Atlantic water in the Arctic. Ledwell (personal
communication) finds values as large as 8 to 9×10−5 m2 s−1 east of Barbados but only
1.7×10−5 m2 s−1 in the subtropical gyre. To cover this range of estimates, we perform
nonlinear simulations at both 1 and 10×10−5 m2 s−1, taking the lower of the two as a
default for the linear growth rate calculations, which are almost independent of A.
At these “best guess” parameters there is no double-diffusive interleaving solution as

the flow is not even linearly unstable. Indeed, the potential for finding nonlinear, finite
amplitude solutions at nearby parameter values is essentially restricted by the existence of
linear instability, rather than any difficulties or features of the nonlinear equilibration. To
illustrate the range of parameters at which linear instability occurs in our 2-D system, we
use the linear solution of Edwards and Richards (1999) to plot in figure 7 the value of lateral
salinity gradient Sy at which the linear growth rate of double-diffusive interleaving equals
10−7 s−1, corresponding to an e-folding time of around three months, as a function of N 2

and Sz. For this figure we used the values A = ν = 10−5 m2 s−1, κs = 10
−6 m2 s−1, r = 0.

Linear growth rates are insensitive to A, relatively insensitive to Sz but more strongly, and
monotonically, dependent on Sy and N

2.
Given the uncertainty concerning parameterizations and parameter values, and the pos-

sibility that observed gradients may correspond to equilibrated, rather than unstable, mean
values, the absence of instability at observed mean gradients may not rule out double dif-
fusion as a formation mechanism for the intrusions. We therefore use the figure to identify
a set of unstable mean gradients “close” to those observed and compute further nonlinear
integrations at these near-observed values. Note, however, that to obtain reasonable, pos-
itive linear growth rates we use an initial lateral salinity gradient 3 times larger than the
observational estimate and a vertical density gradient 3 times smaller. The relevant runs are
denoted OBS1, OBS2 and OBS3 in Table 3 where the parameters used are listed. Qualita-
tively the equilibration of these runs is similar to those described earlier, although convective
regions are present in the solution, in addition to the 3 statically stable regimes, while in
OBS2 and OBS3 the zonal velocity does not fully equilibrate, drifting slowly throughout the
integration. With default values for diffusivities of A = ν = 10−5 m2 s−1, κs = 10

−6 m2

s−1, r = 0 in run OBS1, fluxes and effective diffusivity κeff are small, indeed, for this run
κeff = 19 m

2 s−1 (see Table 4). However, the strong dependence of equilibrated interleaving
fluxes on sub-grid scale diffusivities is evident from run OBS2 in which the diffusivity A is
increased by a factor of 10 to 10−4 m2 s−1, at the upper limit of plausible values discussed
above. This leads to a more than 8-fold increase in effective lateral diffusivity. Finally, in
run OBS3, we rely on our earlier results to suggest the diffusivity parameters which should
produce the largest possible interleaving structure at plausible parameters. For this run,
therefore, we retain the very high value of fingering diffusivity AF , but use a very low value
for the diffusivity AD at the opposing interface of 10

−5 m2 s−1, to give “weak braking”. As
in OBS1 and OBS2, the turbulence parameters are also kept small. In this “optimal double
diffusion” run, we finally manage to obtain a significant intrusion length of 42 km, along
with an effective diffusivity around 400 m2 s−1. The total salinity field in the steady state
is shown in figure 8.

7 An example inertially unstable case

We conclude with a single example case which is unstable to inertial instability. This ex-
periment is denoted II in Table 2. Parameters are as far as possible the same as those of
runs OBS1 to OBS3; the parameters closest to observational estimates which permit double-
diffusive instability. To drive inertial instability we impose, in addition, a lateral shear of
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amplitude 4×10−6 s−1, a reasonable value for equatorial mean flows. The temporal devel-
opment of the instability is shown in figure 9. The instability grows to large amplitude and
eventually removes the driving unstable gradient of angular momentum. Cross-equatorial
heat and salt fluxes are caused by essentially passive advection of mean thermohaline gra-
dients and are four times larger than those found in realistic double-diffusively driven runs.
Intrusive thermohaline features develop and grow to lengths of hundreds of km, as shown in
figure 10, before vertical mixing by secondary instabilities, possibly due to shear, obscures
this vertical structure.

8 Discussion and conclusions

The nonlinear development and equilibration of double-diffusive intrusions at the equator has
been modelled in an idealized, two-dimensional framework. Finite amplitude, quasi-steady
layering solutions exist which can be sustained for long periods by a transfer of potential
energy from the background state. In our standard solution the dimensionless amplitude
a, the amplitude of the salinity perturbation relative to the amplitude when the mean
salinity gradient overturns, reaches a value around 3 in the final state. Although advective
nonlinearity would ultimately limit the amplitude of the intrusions to a value a ≈ 20, the
controlling factor in all cases studied (except for those with artificial suppression of regime
changes) is the braking effect created by the appearance of the opposing double-diffusive
interface when the mean vertical gradients overturn. The opposing interface has a braking
effect as long as the flux ratio is greater than one in S-stable (diffusive) double diffusion
and less than one in T-stable (fingering) double diffusion, which it must be if the microscale
fluxes are driven by the release of background potential energy.
The existence of both T- and S-stable double-diffusive regimes vastly increases the poten-

tial complexity of the sensitivity analysis. To avoid excess complication we treat the effect
of the opposing interface by considering a single limiting case, that of an arbitrarily weak
double-diffusive effect there. The amplitude in this case reaches 8 times the overturning
amplitude. Thus the braking effect in our standard run is important, but even with arbi-
trarily weak double-diffusive fluxes at the opposite interface, the change in diffusive regime
provides a stronger constraint on intrusion growth than advective effects.
Equilibrated dimensionless amplitudes were found to increase weakly with Prandtl /

Schmidt number and strongly with the basic value of the fingering diffusivity. Amplitude
a increases with mean lateral salinity gradient and decreases with vertical salinity gradient
but the change in cross-equatorial diffusivity κeff is opposite. An investigation of the quali-
tative effect of variations in diffusivity with density ratio showed no evidence that variable
diffusivity in itself could lead to much larger amplitude solutions.
When turbulent diffusivity κs is small compared to fingering diffusivity AF , weak varia-

tions in effective flux ratio γeff (Walsh and Ruddick 2000) provide a local constraint which
prevents equilibration until large amplitudes are reached, in some simulations up to 13 times
the overturning amplitude. Local and global constraints on equilibration thus appear to be
of roughly comparable importance. In such cases the solution is statically unstable every-
where outside of a thin fingering interface. For such small turbulent diffusivities it becomes
appropriate to allow for variation of the flux ratio γ itself (as opposed to γeff). Using the
functional dependence suggested for γ(Rρ) by Stern (1975) we find, in one example case, that
small-scale thermohaline staircase structures develop early in the simulation. This supports
Radko’s (2003) numerical result that thermohaline staircases can develop purely as a result
of the decrease of flux ratio γ with Rρ. This process has also been thoroughly investigated in
the laboratory by Krishnamurti (2003). Staircase formation in our case does not appear to
inhibit the formation of mesoscale interleaving structures which reach an amplitude around
a = 5. Within the intrusion region, convective layers merge to fill the periodic domain, leav-
ing only a single, steppy fingering interface in each intrusion layer. Staircase and mesoscale
intrusion formation instabilities can therefore coexist, and doubtless interact, in our simula-
tions leading to intrusions which are also staircases (that is, vertically alternating finger and
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convecting layers). This supports Merryfield’s (2000) suggestions for staircase formation via
interleaving. Thus in our simulations the vertical extent of the convective region, compared
to the vertical intrusion wavelength, varies from zero in the standard case to almost one.
Staircase formation is favoured by smaller background Rρ, so that density overturns soon
after salinity, as in run SZ, and in large amplitude states, in particular for weak turbulent
diffusivity.
Whether these results remain qualitatively true away from the equator remains a mat-

ter of conjecture, since our numerical method, and the dynamical trapping of interleaving
structures close to the equator, makes it non-trivial to apply our results elsewhere. Regard-
ing equatorial interleaving, we note that linear double diffusively-driven instability is absent
in a neighbourhood of observed mean gradients. Postulating unstable gradients around 3
times larger, we obtain large-amplitude interleaving structures only by employing fingering
diffusivities at the upper limit of observational estimates (10−4 m2 s−1) and a low value for
the diffusivity in the opposing, S-stable (diffusive) double-diffusive regime (10−5 m2 s−1).
In realistic double-diffusively driven cases we obtain effective diffusivities, κeff between 20
and 400 m2 s−1.
A further issue is the length of the equilibrated intrusions. Modelled intrusion lengths

in realistic double-diffusive cases are between 10 and 40 km, somewhat less than observed.
Although we can only perform a limited number of nonlinear simulations, we can estimate
this length from the linear solution. The linear solutions have Gaussian y-dependence with
a length scale L given approximately by L2 = 2N/(βm) and harmonic z-dependence. As-
suming that equilibration, at amplitude a, occurs without strong changes to these functional
forms, the intrusion length l at equilibrium, measured as the horizontal displacement of the
central salinity contour (see figure 1), can easily be shown to be the solution of the equation

exp

(

−
βm

8N
l2
)

=
amlSy

2Sz
. (12)

For the parameters of run OBS1 and OBS3 (12) gives l = 7 km at a = 3 and l = 30 km at
a = 13, somewhat underestimating the calculated values. The maximum value of l predicted
by (12) throughout the surface corresponding to figure 7 at a = 13 is l ≈ 80 km while the
maximum value in the entire range 0.001 < Sz < 0.01 psu m

−1, −10−5 < Sy < −10
−6 psu

m−1, 10−5 < N2 < 2.5 × 10−4 s−1 is 55 km for a = 3 and 95 km for the extreme value
a = 13. Thus intrusion lengths up to around 100 km may be plausible within this parameter
range, according to this estimate. Increases in Prandtl number σ may also increase l via
changes in m, as seen in Section 5(b).
It is of interest to compare modelled cross-equatorial diffusivities κeff with estimates

obtained from simple scaling. An approximate balance of along-layer advection and vertical
diffusion suggests the estimate

vSy ≈ AS′/H2, (13)

where subscripts denote derivatives and S ′ is the salinity perturbation. This gives an esti-
mate for the lateral flux of

vS′ = −κeffSy ≈
AS′2

H2Sy
, (14)

hence, by our definition of a,

κeff ≈ Aa2
S
2

z

S
2

y

, (15)

cf Joyce (1977) who effectively assumed a = 1, whereas we obtain values for a between 3
and 13. For the standard run (15) gives a value of 160 m2 s−1 compared to our calculated
value of 110 m2 s−1, while for the more realistic OBS1 (15) gives a value of 30 m2 s−1

compared with a calculated value of 19 m2 s−1. The Joyce scaling (15 with a constant)
implies quadratic dependence on mean gradients, while we obtain a dependence closer to
linear from runs SZ and SY, however, taking the change in a into account we find that for
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runs S, SY, SZ and OBS1, the estimates are consistently around 50 % too large. The scaling
relation (15) underestimates sensitivity to A and fails to take account of some important
parameters, but with a set to a constant value of a = 3 from our standard run, the estimate
remains within an order of magnitude of the calculated result in all cases considered.
Finally, by way of comparison, we give a single example of inertial instability driving in-

trusive layers up to 190 km in length giving an effective diffusivity four times larger than any
realistic double-diffusive simulation. Richards and Edwards (2003) give further evidence for
the potential of inertial instability to produce interleaving, and propose a parameterization
for the effective lateral diffusion coefficient.
Along-layer density ratios Rl can be calculated for both double-diffusive and inertial

cases. As noted by McDougall (1985) values in double-diffusive cases are expected to be
close to 0.9. In two dimensions the calculation is complicated by the fact that layer slopes
vary with latitude and between temperature and salinity perturbations. The inertially driven
linear solutions of Edwards and Richards (1999) feature a strong negative peak of layer slope
at the centre of the disturbance where Rl approaches Rρ, although typical values of Rl are
between 0.8 and 2.2 for the parameters used in that paper. For our nonlinear, double-
diffusively driven solutions Rl lies between 0.85 and 0.95 in almost all cases, the nonlinear
contribution to Rl being very small. For the single inertially driven case a value of 1.03 is
obtained at the centre of the disturbance at finite amplitude. When solutions reach very
large amplitude, strong dislocation of T and S maxima and strong curvature can give locally
more extreme values of Rl.
A pertinent question concerning the driving mechanism for instability is whether much

larger amplitude double-diffusive intrusions are precluded by our simple form of diffusiv-
ity. A higher-order turbulence closure might permit a vertical localisation of diffusivity
onto the interfaces, thus allowing relatively strong diffusive interfacial fluxes to drive in-
trusions with low interior mixing and thus relatively undisturbed water-mass properties.
Double-diffusively driven intrusions of this type can be readily produced at laboratory scale,
however, it is not immediately apparent why our 1st order turbulence closure should be
inadequate in the present context since time-dependence, advection and non-local effects on
the sub-grid scale fluxes would be expected to be small. In a more general sense, proving
the inability of double diffusion to reproduce observed intrusion amplitudes by modelling
results alone would be almost impossible. After a fairly thorough investigation, however, we
find that large amplitude double-diffusive states can only be achieved using mean gradients
several times greater than observed and microscale diffusivities at the limit of observational
estimates. Even so, intrusion lengths remain rather small. Inertial instability, by contrast,
readily produces large intrusions (Richards and Edwards 2003). Richards and Banks (2002)
find that the instantaneous flow (as opposed to the time mean) is unstable to inertial insta-
bility a significant amount of the time. A thorough examination of inertial instability with
double-diffusively driven fluxes within the thermocline at the equator will be the subject of
subsequent papers but here we note that even if double-diffusive effects are not the primary
mechanism for the formation of the observed intrusions, double diffusion may well play a
role at finite amplitude, influencing both the vertical and horizontal fluxes of tracers.
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Figure 1: Schematic representation of interleaving structure showing background isohalines;
dashed, and an isohaline in the fully developed, large amplitude state; continuous. Intrusive
layers containing warm, salty water rise across isopycnals as indicated by the arrows. The
instability mechanism is explained, in terms of vorticity dynamics, by Edwards and Richards
(1999). Intrusion length l is defined here as the maximum lateral displacement of a central
contour as indicated.
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density gradient. 107s≈ 100 days. Units are psu/m for ∂S/∂z, K/m for ∂T/∂z and kg/m4

for ∂ρ/∂z.
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Figure 3: Perturbation fields of temperature (a), salinity (b), density (c), streamfunction
(d), zonal velocity (e) and total salinity field (f) for the final state of run S. Extreme values
are ±2.7 K (a), ±0.44 psu (b), ±0.13 kg m−3 (c), -0.095, +0.059, m2 s−1 (d), -0.014, +0.016
m s−1 (e), -16, +17 psu (f). Note that the large and uniform background salinity gradients
lead to unrealistically large variations in salinity.

20



-400 -200 0 200 400

y (km)

0

5

10

15

20

25

30

z 
(m

) 

4.
0

4.0

4.
5

4.
0

4.
0

4.
0

2.0

1.
0

4.
5 4.

5

5.0
5.

0

5.0

5.
0

5.
5

6.
0

6.
5

7.
0

5.5

5.
5 6.

0

6.
5

7.
0

5.5 2.0
1.0
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equator and maximum vertical density gradient for a run with no dissipation of temperature
and salinity in stable regions apart from double diffusion, κs = r = κy = 0. 10

7s≈ 100 days.
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Figure 6: Temperature perturbation for a run with flux ratio a decreasing function of density
ratio and with turbulent diffusivity κs set to zero (a) after development of staircase structure
at t = 4× 106 s, (b) after equilibration of interleaving structure at t = 1.6× 107 s. A single
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Figure 8: Contours of total salinity for a double-diffusively driven run with realistic param-
eters chosen to give optimally large amplitude interleaving, parameters for the run, labelled
OBS3, are given in Table 2.

23



0 1 2 3 4

x 10
7

−0.05

0

0.05

0.1

0.15

0.2

time(s)

max rho (kg/m3)
<vT> (Km/s)
max drho/dz (kg/m4)

Figure 9: Maximum density perturbation, average advective northward heat flux at the
equator and maximum vertical density gradient for an inertially unstable case.
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Figure 10: Contours of total salinity for an inertially unstable basic state after about 60
days integration, close to the time of peak amplitude of the disturbance.
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Table 1: Values of constants used in main run.

parameter value interpretation

β 2.289×10−11 m−1s−1 gradient of Coriolis parameter
g 9.78 ms−2 gravitational acceleration
ρ0 1020 kg m−3 reference density
νy 300 m2s−1 meridional viscosity
νz 3×10−5 m2s−1 vertical viscosity
r 10−7 s−1 Rayleigh drag
δ 0.78ρ0 psu

−1 salinity contraction coefficient
α 0.17ρ0 K

−1 thermal expansion coefficient
AF 3×10−5 m2s−1 salinity diffusivity (fingers)
γF 0.5 flux ratio (fingers)
AD 0.6×10−5 m2s−1 salinity diffusivity (diffusive)
γD 5 flux ratio (diffusive)
κs 10−5 m2s−1 turbulent viscosity
κu 10−4 m2s−1 convective viscosity
H 30 m domain height
L 800 km domain width
N 0.02 s−1 buoyancy frequency

∂S/∂y -4×10−5 psu m−1 meridional salinity gradient
∂S/∂z 0.03 psu m−1 vertical salinity gradient
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Table 2: Parameters for the numerical runs. Diffusivities and viscosities are in units of 10−5

m2 s−1, Rayleigh drag r is given in units of 10−7 s−1, the initial salinity gradients Sy and
Sz are given in units of 10

−5 psu m−1 and psu m−1 respectively. For runs with variable
diffusivity, maximum and minimum values are given, see Table 4 for details. For runs with
variable diffusivity, σ = (A+ κs)/ν. Run II has an imposed mean shear uy = 4× 10

−6 s−1.

run H (m) AF AD γD κs κu r Sy Sz σ comments
S 30 3 0.6 5 1 10 1 -4 0.03 1 standard
XPF 300 3 0.6 5 1 10 0 -4 0.03 1 no pert’n flux b.c.
D 30 3 0.6 5 1 10 1 -4 0.03 1 linear advection
A 30 3 3 0.6 1 1 1 -4 0.03 1 no regime changes
AH 30 3 3 0.6 1 1 1 -4 0.03 1 as A, hydrostatic
WB 30 3 0 1 1 10 1 -4 0.03 1 weak braking
SZ 30 3 0.6 5 1 10 1 -4 0.06 1 2×∂S/∂z
SY 25 3 0.6 5 1 10 1 -8 0.03 1 2×∂S/∂y
2S 34.5 3 0.6 5 1 10 1 -4 0.03 2 2×σ
D2 34.5 6 0.6 5 1 10 1 -4 0.03 1 2×AF

D4 44 12 0.6 5 1 10 1 -4 0.03 1 4×AF

D+2 32 1.5<3 0.6 5 1 10 0 -4 0.03 1 AF (Rρ)
D-2 32 3<6 0.6 5 1 10 0 -4 0.03 1 AF (Rρ)
D+5 32 0.6<3 0.6 5 1 10 1 -4 0.03 1 AF (Rρ)
D-5 32 3<15 0.6 5 1 10 0 -4 0.03 1 AF (Rρ)
K/2 26 3 0.6 5 0.5 10 1 -4 0.03 1 0.5×κs
K0 20 3 0.6 5 0 10 1 -4 0.03 1 κs = 0
T0 20 3 0.6 5 0 10 0 -4 0.03 1 κs = r = κy = 0
GR 20 3 0.6 5 0 10 1 -4 0.03 1 γF (Rρ), κs = 0
OBS1 20 1 0.2 5 0.1 10 0 -0.5 0.002 1 N0 = 0.007 s

−1

OBS2 45 10 2 5 0.1 10 0 -0.5 0.002 1 N0 = 0.007 s
−1

OBS3 45 10 0.2 5 0.1 10 0 -0.5 0.002 1 N0 = 0.007 s
−1

II 48 1 0.2 5 0.2 10 0 -0.5 0.002 1 N0 = 0.007 s
−1
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Table 3: Results at steady state, or maximum values in cases marked *. Note that in all cases
except OBS1, OBS2, OBS3 and II, the driving thermohaline gradients are unrealistically
large and it is the relative amplitude of solutions which should be considered significant.
The amplitude a for run XPF is calculated for the central layer in the domain.

run vT max(ρ′) intrusion κeff a
K m s−1 kg m−3 length (km) m2 s−1

S 0.0196 0.127 20 110 3.1
XPF 0.0251 0.195 29 140 6.4
D 0.0203 0.131 19 110 2.8
A 0.219 0.294 81 1200 14
AH 0.261* 0.629* 95* 1400* 21*
WB 0.086 0.202 49 469 8.4
SZ 0.0465 0.195 30 250 2.3
SY 0.0261 0.196 15 70 5.2
2S 0.0214 0.148 24 120 3.3
D2 0.0626 0.3 32 340 4.5
D4 0.247 0.677 64 1300 8.3
D+2 0.0120 0.114 20 65 2.9
D-2 0.0392 0.231 29 210 5.3
D+5 0.00455 0.0568 3 25 0
D-5 0.0563 0.280 30 310 8.2
K/2 0.0273 0.214 22 150 3.9
K0 0.0367 0.403 13 200 3.3
T0 0.103 0.61 26 561 13
GR 0.0737 0.532 16 421 4.6
OBS1 4.26×10−4 0.0206 10 19 4.4
OBS2 3.71×10−3 0.102 17 162 6.3
OBS3 9.66×10−3 0.0981 43 421 13
II 0.046* 0.184* 190* 2000* 50

Table 4: Parameters for runs with variable diffusvity. Diffusivities are in units of 10−5

m2s−1.

run R1 R2 A1 A2

D+2 1.5 2.5 1.5 3
D-2 1.5 2.5 6 3
D+5 1.5 2.5 0.6 3
D-5 1.5 2.5 15 3
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