1,831 research outputs found

    Switching and symmetry breaking behaviour of discrete breathers in Josephson ladders

    Get PDF
    We investigate the roto-breathers recently observed in experiments on Josephson ladders subjected to a uniform transverse bias current. We describe the switching mechanism in which the number of rotating junctions increases. In the region close to switching we find that frequency locking, period doubling, quasi-periodic behaviour and symmetry breaking all occur. This suggests that a chaotic dynamic occurs in the switching process. Close to switching the induced flux increases sharply and clearly plays an important role in the switching mechanism. We also find three critical frequencies which are independent of the dissipation constant α\alpha, provided that α\alpha is not too large

    INCREASES IN COSTS AND RETURNS DUE TO INTENSIFYING RANGE FORAGE PRODUCTION SURVEYS: AN INFORMATION ECONOMIC ANALYSIS

    Get PDF
    The U.S. Congress and courts have directed federal natural resource agencies to use better information for management decisions than they have used in the past. It is also important for these agencies to improve the efficiency of resource use where possible. This information economics study estimates increased costs and revenues which can be directly imputed to improving the accuracy of range forage production surveys. It suggests that a high level of survey accuracy may often be justifiable.Crop Production/Industries, Research Methods/ Statistical Methods,

    Chaotic transients in the switching of roto-breathers

    Get PDF
    By integrating a set of model equations for Josephson ladder subjected to a uniform transverse bias current we have found almost all of the kinds of breathers described in recent experiments, and closely reproduced their voltage-current characteristics and switching behaviour. Our main result is that a chaotic transient occurs in the switching process. The growth of tiny perturbations during the chaotic transient causes the new breather configuration to be extremely sensitive to the precise history of the initial breather and can also cause the new breather to have a new centre of symmetry.Comment: 6 pages, 4 figure

    Critical fields and devil's staircase in superconducting ladders

    Get PDF
    We have determined the ground state for both a ladder array of Josephson junctions and a ladder of thin superconducting wires. We find that the repulsive interaction between vortices falls off exponentially with separation. The fact that the interaction is short-range leads to novel phenomena. The ground state vortex density exhibits a complete devil's staircase as the applied magnetic field is increased, each step producing a pair of metal-insulator transitions. The critical fields in the staircase are all calculated analytically and depend only on the connectivity of the ladder and the area of the elementary plaquette. In particular the normal square ladder contains no vortices at all until the flux per plaquette reaches 0.5/sqrt{3} flux quanta.Comment: 4 pages (Revtex), 3 postscript figure

    Resistance to quambalaria shoot blight and myrtle rust in Corymbia calophylla seedlings

    Get PDF
    Abstract Corymbia calophylla (marri), an endemic keystone tree species in southwest Western Australia, is increasingly impacted by the introduced basidiomycete smut Quambalaria pitereka. The basidiomycete rust Austropuccinia psidii (myrtle rust), an invasive pathogen recently introduced to Eastern Australia, is expected to spread to the southwest of Western Australia eventually. Austropuccinia psidii has similar epidemiology to Q. pitereka, and there is concern that C. calophylla may be susceptible. Preliminary pathogenicity tests showed significant differences in aggressiveness between twelve Q. pitereka isolates, and there was evidence of interactions between isolates and C. calophylla provenances. Seedlings from 59 open-pollinated families from 11 provenances covering the natural range of marri were screened for resistance to Q. pitereka and A. psidii under controlled glasshouse conditions. Resistance of seedlings within provenances to Q. pitereka and A. psidii differed significantly. There was no significant correlation between resistance to Q. pitereka and resistance to A. psidii. Seedlings of provenances from wetter regions were more resistant to both pathogens, but the correlation coefficients were insignificant. Seedlings of four families in three provenances (Serpentine, Chidlow, and Kingston) showed 100% resistance to Q. pitereka. Narrow-sense heritability estimates were 0.07 for quambalaria shoot blight resistance and 0.34 for myrtle rust resistance. The results indicate the potential to use selected families/individuals resistant to Q. pitereka and A. psidii for tree improvement programs and adaptive management strategies

    Higher harmonic anisotropic flow measurements of charged particles at 2.76 TeV with the ALICE detector

    Full text link
    We report the measurements of elliptic flow v2v_{2}, as well as higher harmonics triangular flow v3v_{3} and quadrangular flow v4v_{4}, in sNN=\sqrt{s_{_{NN}}} = 2.76 TeV Pb--Pb collisions, measured with the ALICE detector. We show that the measured elliptic and triangular flow can be understood from the initial spatial anisotropy and its event--by--event fluctuations. The resulting fluctuations of v2v_{2} and v3v_{3} are also discussed.Comment: 6 pages, 4 figures, proceeding of Strangeness in Quark Matter 2011, Cracow, Polan

    Structure of the Current Sheet in the 11 July 2017 Electron Diffusion Region Event.

    Get PDF
    The structure of the current sheet along the Magnetospheric Multiscale (MMS) orbit is examined during the 11 July 2017 Electron Diffusion Region (EDR) event. The location of MMS relative to the X-line is deduced and used to obtain the spatial changes in the electron parameters. The electron velocity gradient values are used to estimate the reconnection electric field sustained by nongyrotropic pressure. It is shown that the observations are consistent with theoretical expectations for an inner EDR in 2-D reconnection. That is, the magnetic field gradient scale, where the electric field due to electron nongyrotropic pressure dominates, is comparable to the gyroscale of the thermal electrons at the edge of the inner EDR. Our approximation of the MMS observations using a steady state, quasi-2-D, tailward retreating X-line was valid only for about 1.4 s. This suggests that the inner EDR is localized; that is, electron outflow jet braking takes place within an ion inertia scale from the X-line. The existence of multiple events or current sheet processes outside the EDR may play an important role in the geometry of reconnection in the near-Earth magnetotail

    Plant functional traits differ in adaptability and are predicted to be differentially affected by climate change

    Get PDF
    1. Climate change is testing the resilience of forests worldwide pushing physiological tolerance to climatic extremes. Plant functional traits have been shown to be adapted to climate and have evolved patterns of trait correlations (similar patterns of distribution) and coordinations (mechanistic trade-off). We predicted that traits would differentiate between populations associated with climatic gradients, suggestive of adaptive variation, and correlated traits would adapt to future climate scenarios in similar ways. 2. We measured genetically determined trait variation and described patterns of correlation for seven traits: photochemical reflectance index (PRI), normalized difference vegetation index (NDVI), leaf size (LS), specific leaf area (SLA), δ13C (integrated water-use efficiency, WUE), nitrogen concentration (NCONC), and wood density (WD). All measures were conducted in an experimental plantation on 960 trees sourced from 12 populations of a key forest canopy species in southwestern Australia. 3. Significant differences were found between populations for all traits. Narrow sense heritability was significant for five traits (0.15–0.21), indicating that natural selection can drive differentiation; however, SLA (0.08) and PRI (0.11) were not significantly heritable. Generalized additive models predicted trait values across the landscape for current and future climatic conditions (>90% variance). The percent change differed markedly among traits between current and future predictions (differing as little as 1.5% (δ13C) or as much as 30% (PRI)). Some trait correlations were predicted to break down in the future (SLA:NCONC, δ13C:PRI, and NCONC:WD). 4. Synthesis: Our results suggest that traits have contrasting genotypic patterns and will be subjected to different climate selection pressures, which may lower the working optimum for functional traits. Further, traits are independently associated with different climate factors, indicating that some trait correlations may be disrupted in the future. Genetic constraints and trait correlations may limit the ability for functional traits to adapt to climate change
    corecore