25 research outputs found

    Association of Age with Mortality and Virological and Immunological Response to Antiretroviral Therapy in Rural South African Adults

    Get PDF
    OBJECTIVE: To assess whether treatment outcomes vary with age for adults receiving antiretroviral therapy (ART) in a large rural HIV treatment cohort. DESIGN: Retrospective cohort analysis using data from a public HIV Treatment & Care Programme. METHODS: Adults initiating ART 1(st) August 2004-31(st) October 2009 were stratified by age at initiation: young adults (16-24 years) mid-age adults (25-49 years) and older (≄50 years) adults. Kaplan-Meier survival analysis was used to estimate mortality rates and age and person-time stratified Cox regression to determine factors associated with mortality. Changes in CD4 cell counts were quantified using a piecewise linear model based on follow-up CD4 cell counts measured at six-monthly time points. RESULTS: 8846 adults were included, 808 (9.1%) young adults; 7119 (80.5%) mid-age adults and 919 (10.4%) older adults, with 997 deaths over 14,778 person-years of follow-up. Adjusting for baseline characteristics, older adults had 32% excess mortality (p = 0.004) compared to those aged 25-49 years. Overall mortality rates (MR) per 100 person-years were 6.18 (95% CI 4.90-7.78); 6.55 (95% CI 6.11-7.02) and 8.69 (95% CI 7.34-10.28) for young, mid-age and older adults respectively. In the first year on ART, for older compared to both young and mid-aged adults, MR per 100 person-years were significantly higher; 0-3 months (MR: 27.1 vs 17.17 and 21.36) and 3-12 months (MR: 9.5 vs 4.02 and 6.02) respectively. CD4 count reconstitution was lower, despite better virological response in the older adults. There were no significant differences in MR after 1 year of ART. Baseline markers of advanced disease were independently associated with very early mortality (0-3 months) whilst immunological and virological responses were associated with mortality after 12 months. CONCLUSIONS: Early ART initiation and improving clinical care of older adults are required to reduce high early mortality and enhance immunologic recovery, particularly in the initial phases of ART

    Tuberculosis mortality and the male survival deficit in rural South Africa:An observational community cohort study

    Get PDF
    BACKGROUND: Women live on average five years longer than men, and the sex difference in longevity is typically lower in populations with high mortality. South Africa-a high mortality population with a large sex disparity-is an exception, but the causes of death that contribute to this difference are not well understood. METHODS: Using data from a demographic surveillance system in rural KwaZulu-Natal (2000-2014), we estimate differences between male and female adult life expectancy by HIV status. The contribution of causes of death to these life expectancy differences are computed with demographic decomposition techniques. Cause of death information comes from verbal autopsy interviews that are interpreted with the InSilicoVA tool. RESULTS: Adult women lived an average of 10.4 years (95% confidence Interval 9.0-11.6) longer than men. Sex differences in adult life expectancy were even larger when disaggregated by HIV status: 13.1 (95% confidence interval 10.7-15.3) and 11.2 (95% confidence interval 7.5-14.8) years among known HIV negatives and positives, respectively. Elevated male mortality from pulmonary tuberculosis (TB) and external injuries were responsible for 43% and 31% of the sex difference in life expectancy among the HIV negative population, and 81% and 16% of the difference among people living with HIV. CONCLUSIONS: The sex differences in adult life expectancy in rural KwaZulu-Natal are exceptionally large, atypical for an African population, and largely driven by high male mortality from pulmonary TB and injuries. This is the case for both HIV positive and HIV negative men and women, signalling a need to improve the engagement of men with health services, irrespective of their HIV status

    High-levels of acquired drug resistance in adult patients failing first-line antiretroviral therapy in a rural HIV treatment programme in KwaZulu-Natal, South Africa.

    Get PDF
    OBJECTIVE: To determine the frequency and patterns of acquired antiretroviral drug resistance in a rural primary health care programme in South Africa. DESIGN: Cross-sectional study nested within HIV treatment programme. METHODS: Adult (≄ 18 years) HIV-infected individuals initially treated with a first-line stavudine- or zidovudine-based antiretroviral therapy (ART) regimen and with evidence of virological failure (one viral load >1000 copies/ml) were enrolled from 17 rural primary health care clinics. Genotypic resistance testing was performed using the in-house SATuRN/Life Technologies system. Sequences were analysed and genotypic susceptibility scores (GSS) for standard second-line regimens were calculated using the Stanford HIVDB 6.0.5 algorithms. RESULTS: A total of 222 adults were successfully genotyped for HIV drug resistance between December 2010 and March 2012. The most common regimens at time of genotype were stavudine, lamivudine and efavirenz (51%); and stavudine, lamivudine and nevirapine (24%). Median duration of ART was 42 months (interquartile range (IQR) 32-53) and median duration of antiretroviral failure was 27 months (IQR 17-40). One hundred and ninety one (86%) had at least one drug resistance mutation. For 34 individuals (15%), the GSS for the standard second-line regimen was <2, suggesting a significantly compromised regimen. In univariate analysis, individuals with a prior nucleoside reverse-transcriptase inhibitor (NRTI) substitution were more likely to have a GSS <2 than those on the same NRTIs throughout (odds ratio (OR) 5.70, 95% confidence interval (CI) 2.60-12.49). CONCLUSIONS: There are high levels of drug resistance in adults with failure of first-line antiretroviral therapy in this rural primary health care programme. Standard second-line regimens could potentially have had reduced efficacy in about one in seven adults involved

    High dose oral rifampicin to improve survival from adult tuberculous meningitis: A randomised placebo-controlled double-blinded phase III trial (the HARVEST study)

    Get PDF
    Background: Tuberculous meningitis (TBM), the most severe form of tuberculosis (TB), results in death or neurological disability in &gt;50%, despite World Health Organisation recommended therapy. Current TBM regimen dosages are based on data from pulmonary TB alone. Evidence from recent phase II pharmacokinetic studies suggests that high dose rifampicin (R) administered intravenously or orally enhances central nervous system penetration and may reduce TBM associated mortality. We hypothesize that, among persons with TBM, high dose oral rifampicin (35 mg/kg) for 8 weeks will improve survival compared to standard of care (10 mg/kg), without excess adverse events. Protocol: We will perform a parallel group, randomised, placebo-controlled, double blind, phase III multicentre clinical trial comparing high dose oral rifampicin to standard of care. The trial will be conducted across five clinical sites in Uganda, South Africa and Indonesia. Participants are HIV-positive or negative adults with clinically suspected TBM, who will be randomised (1:1) to one of two arms: 35 mg/kg oral rifampicin daily for 8 weeks (in combination with standard dose isoniazid [H], pyrazinamide [Z] and ethambutol [E]) or standard of care (oral HRZE, containing 10 mg/kg/day rifampicin). The primary end-point is 6-month survival. Secondary end points are: i) 12-month survival ii) functional and neurocognitive outcomes and iii) safety and tolerability. Tertiary outcomes are: i) pharmacokinetic outcomes and ii) cost-effectiveness of the intervention. We will enrol 500 participants over 2.5 years, with follow-up continuing until 12 months post-enrolment. Discussion: Our best TBM treatment still results in unacceptably high mortality and morbidity. Strong evidence supports the increased cerebrospinal fluid penetration of high dose rifampicin, however conclusive evidence regarding survival benefit is lacking. This study will answer the important question of whether high dose oral rifampicin conveys a survival benefit in TBM in HIV-positive and -negative individuals from Africa and Asia. Trial registration: ISRCTN15668391 (17/06/2019

    Tracking the international spread of SARS-CoV-2 lineages B.1.1.7 and B.1.351/501Y-V2

    Get PDF
    Publisher Copyright: © 2021 O'Toole Á et al.Late in 2020, two genetically-distinct clusters of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with mutations of biological concern were reported, one in the United Kingdom and one in South Africa. Using a combination of data from routine surveillance, genomic sequencing and international travel we track the international dispersal of lineages B.1.1.7 and B.1.351 (variant 501Y-V2). We account for potential biases in genomic surveillance efforts by including passenger volumes from location of where the lineage was first reported, London and South Africa respectively. Using the software tool grinch (global report investigating novel coronavirus haplotypes), we track the international spread of lineages of concern with automated daily reports, Further, we have built a custom tracking website (cov-lineages.org/global_report.html) which hosts this daily report and will continue to include novel SARS-CoV-2 lineages of concern as they are detected.Peer reviewe

    A year of genomic surveillance reveals how the SARS-CoV-2 pandemic unfolded in Africa.

    Get PDF
    The progression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in Africa has so far been heterogeneous, and the full impact is not yet well understood. In this study, we describe the genomic epidemiology using a dataset of 8746 genomes from 33 African countries and two overseas territories. We show that the epidemics in most countries were initiated by importations predominantly from Europe, which diminished after the early introduction of international travel restrictions. As the pandemic progressed, ongoing transmission in many countries and increasing mobility led to the emergence and spread within the continent of many variants of concern and interest, such as B.1.351, B.1.525, A.23.1, and C.1.1. Although distorted by low sampling numbers and blind spots, the findings highlight that Africa must not be left behind in the global pandemic response, otherwise it could become a source for new variants

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.

    Get PDF
    Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    International Spread of MDR TB from Tugela Ferry, South Africa

    Get PDF
    We describe a death associated with multidrug-resistant tuberculosis and HIV infection outside Africa that can be linked to Tugela Ferry (KwaZulu-Natal, South Africa), the town most closely associated with the regional epidemic of drug-resistant tuberculosis. This case underscores the international relevance of this regional epidemic, particularly among health care workers

    Tracking the international spread of SARS-CoV-2 lineages B.1.1.7 and B.1.351/501Y-V2 with grinch

    No full text
    Late in 2020, two genetically-distinct clusters of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with mutations of biological concern were reported, one in the United Kingdom and one in South Africa. Using a combination of data from routine surveillance, genomic sequencing and international travel we track the international dispersal of lineages B.1.1.7 and B.1.351 (variant 501YV2). We account for potential biases in genomic surveillance efforts by including passenger volumes from location of where the lineage was first reported, London and South Africa respectively. Using the software tool grinch (global report investigating novel coronavirus haplotypes), we track the international spread of lineages of concern with automated daily reports, Further, we have built a custom tracking website (cov-lineages.org/global_report.html) which hosts this daily report and will continue to include novel SARS-CoV-2 lineages of concern as they are detected
    corecore