328 research outputs found

    Enhanced health event detection and influenza surveillance using a joint Veterans Affairs and Department of Defense biosurveillance application

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The establishment of robust biosurveillance capabilities is an important component of the U.S. strategy for identifying disease outbreaks, environmental exposures and bioterrorism events. Currently, U.S. Departments of Defense (DoD) and Veterans Affairs (VA) perform biosurveillance independently. This article describes a joint VA/DoD biosurveillance project at North Chicago-VA Medical Center (NC-VAMC). The Naval Health Clinics-Great Lakes facility physically merged with NC-VAMC beginning in 2006 with the full merger completed in October 2010 at which time all DoD care and medical personnel had relocated to the expanded and remodeled NC-VAMC campus and the combined facility was renamed the Lovell Federal Health Care Center (FHCC). The goal of this study was to evaluate disease surveillance using a biosurveillance application which combined data from both populations.</p> <p>Methods</p> <p>A retrospective analysis of NC-VAMC/Lovell FHCC and other Chicago-area VAMC data was performed using the ESSENCE biosurveillance system, including one infectious disease outbreak (Salmonella/Taste of Chicago-July 2007) and one weather event (Heat Wave-July 2006). Influenza-like-illness (ILI) data from these same facilities was compared with CDC/Illinois Sentinel Provider and Cook County ESSENCE data for 2007-2008.</p> <p>Results</p> <p>Following consolidation of VA and DoD facilities in North Chicago, median number of visits more than doubled, median patient age dropped and proportion of females rose significantly in comparison with the pre-merger NC-VAMC facility. A high-level gastrointestinal alert was detected in July 2007, but only low-level alerts at other Chicago-area VAMCs. Heat-injury alerts were triggered for the merged facility in June 2006, but not at the other facilities. There was also limited evidence in these events that surveillance of the combined population provided utility above and beyond the VA-only and DoD-only components. Recorded ILI activity for NC-VAMC/Lovell FHCC was more pronounced in the DoD component, likely due to pediatric data in this population. NC-VAMC/Lovell FHCC had two weeks of ILI activity exceeding both the Illinois State and East North Central Regional baselines, whereas Hines VAMC had one and Jesse Brown VAMC had zero.</p> <p>Conclusions</p> <p>Biosurveillance in a joint VA/DoD facility showed potential utility as a tool to improve surveillance and situational awareness in an area with Veteran, active duty and beneficiary populations. Based in part on the results of this pilot demonstration, both agencies have agreed to support the creation of a combined VA/DoD ESSENCE biosurveillance system which is now under development.</p

    Large N QCD in two dimensions with a baryonic chemical potential

    Full text link
    We consider large N gauge theory on a two dimensional lattice in the presence of a baryonic chemical potential. We work with one copy of naive fermion and argue that reduction holds even in the presence of a chemical potential. Analytical arguments supported by numerical studies show that there is no phase transition as a function of the baryonic chemical potential.Comment: 12 pages, 4 figures; Published version, typos correcte

    Fluorescent redox-dependent labeling of lipid droplets in cultured cells by reduced phenazine methosulfate

    Get PDF
    Natural and synthetic phenazines are widely used in biomedical sciences. In dehydrogenase histochemistry, phenazine methosulfate (PMS) is applied as a redox reagent for coupling reduced coenzymes to the reduction of tetrazolium salts into colored formazans. PMS is also currently used for cytotoxicity and viability assays of cell cultures using sulfonated tetrazoliums. Under UV (340 nm) excitation, aqueous solutions of the cationic PMS show green fluorescence (λem: 526 nm), whereas the reduced hydrophobic derivative (methyl-phenazine, MPH) shows blue fluorescence (λem: 465 nm). Under UV (365 nm) excitation, cultured cells (LM2, IGROV-1, BGC-1, and 3T3-L1 adipocytes) treated with PMS (5 μg/mL, 30 min) showed cytoplasmic granules with bright blue fluorescence, which correspond to lipid droplets labeled by the lipophilic methyl-phenazine. After formaldehyde fixation blue-fluorescing droplets could be stained with oil red O. Interestingly, PMS-treated 3T3-L1 adipocytes observed under UV excitation 24 h after labeling showed large lipid droplets with a weak green emission within a diffuse pale blue-fluorescing cytoplasm, whereas a strong green emission was observed in small lipid droplets. This fluorescence change from blue to green indicates that reoxidation of methyl-phenazine to PMS can occur. Regarding cell uptake and labeling mechanisms, QSAR models predict that the hydrophilic PMS is not significantly membrane-permeant, so most PMS reduction is expected to be extracellular and associated with a plasma membrane NAD(P)H reductase. Once formed, the lipophilic and blue-fluorescing methyl-phenazine enters live cells and mainly accumulates in lipid droplets. Overall, the results reported here indicate that PMS is an excellent fluorescent probe to investigate labeling and redox dynamics of lipid droplets in cultured cells.Fil: Stockert, Juan C.. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Oncología; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Veterinarias. Instituto de Investigación y Tecnología en Reproducción Animal; ArgentinaFil: Carou, María Clara. Universidad de Buenos Aires. Facultad de Ciencias Veterinarias. Instituto de Investigación y Tecnología en Reproducción Animal; ArgentinaFil: Casas, Adriana Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Investigaciones sobre Porfirinas y Porfirias. Universidad de Buenos Aires. Centro de Investigaciones sobre Porfirinas y Porfirias; ArgentinaFil: Garcia Vior, María Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Orgánica; ArgentinaFil: Ezquerra Riega, Sergio Dario. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Orgánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; ArgentinaFil: Blanco, María M.. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Orgánica; ArgentinaFil: Espada, Jesús. Universidad Bernardo O'Higgins; ChileFil: Blázquez Castro, Alfonso. Universidad Autónoma de Madrid. Facultad de Ciencias. Departamento de Biología; EspañaFil: Horobin, Richard W.. University of Glasgow; Reino UnidoFil: Lombardo, Daniel Marcelo. Universidad de Buenos Aires. Facultad de Ciencias Veterinarias. Instituto de Investigación y Tecnología en Reproducción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; Argentin

    Vertical flight training: An overview of training and flight simulator technology with emphasis on rotary-wing requirements

    Get PDF
    The principal purpose of this publication is to provide a broad overview of the technology that is relevant to the design of aviation training systems and of the techniques applicable to the development, use, and evaluation of those systems. The issues addressed in our 11 chapters are, for the most part, those that would be expected to surface in any informed discussion of the major characterizing elements of aviation training systems. Indeed, many of the same facets of vertical-flight training discussed were recognized and, to some extent, dealt with at the 1991 NASA/FAA Helicopter Simulator Workshop. These generic topics are essential to a sound understanding of training and training systems, and they quite properly form the basis of any attempt to systematize the development and evaluation of more effective, more efficient, more productive, and more economical approaches to aircrew training. Individual chapters address the following topics: an overview of the vertical flight industry: the source of training requirements; training and training schools: meeting current requirements; training systems design and development; transfer of training and cost-effectiveness; the military quest for flight training effectiveness; alternative training systems; training device manufacturing; simulator aero model implementation; simulation validation in the frequency domain; cockpit motion in helicopter simulation; and visual space perception in flight simulators

    Large-scale associations between the leukocyte transcriptome and BOLD responses to speech differ in autism early language outcome subtypes.

    Get PDF
    Heterogeneity in early language development in autism spectrum disorder (ASD) is clinically important and may reflect neurobiologically distinct subtypes. Here, we identified a large-scale association between multiple coordinated blood leukocyte gene coexpression modules and the multivariate functional neuroimaging (fMRI) response to speech. Gene coexpression modules associated with the multivariate fMRI response to speech were different for all pairwise comparisons between typically developing toddlers and toddlers with ASD and poor versus good early language outcome. Associated coexpression modules were enriched in genes that are broadly expressed in the brain and many other tissues. These coexpression modules were also enriched in ASD-associated, prenatal, human-specific, and language-relevant genes. This work highlights distinctive neurobiology in ASD subtypes with different early language outcomes that is present well before such outcomes are known. Associations between neuroimaging measures and gene expression levels in blood leukocytes may offer a unique in vivo window into identifying brain-relevant molecular mechanisms in ASD

    Feasibility study of computational occupational dosimetry: evaluating a proof-of-concept in an endovascular and interventional cardiology setting

    Get PDF
    Individual monitoring of radiation workers is essential to ensure compliance with legal dose limits and to ensure that doses are As Low As Reasonably Achievable. However, large uncertainties still exist in personal dosimetry and there are issues with compliance and incorrect wearing of dosimeters. The objective of the PODIUM (Personal Online Dosimetry Using Computational Methods) project was to improve personal dosimetry by an innovative approach: the development of an online dosimetry application based on computer simulations without the use of physical dosimeters. Occupational doses were calculated based on the use of camera tracking devices, flexible individualised phantoms and data from the radiation source. When combined with fast Monte Carlo simulation codes, the aim was to perform personal dosimetry in real-time. A key component of the PODIUM project was to assess and validate the methodology in interventional radiology workplaces where improvements in dosimetry are needed. This paper describes the feasibility of implementing the PODIUM approach in a clinical setting. Validation was carried out using dosimeters worn by Vascular Surgeons and Interventional Cardiologists during patient procedures at a hospital in Ireland. Our preliminary results from this feasibility study show acceptable differences of the order of 40% between calculated and measured staff doses, in terms of the personal dose equivalent quantity Hp(10), however there is a greater deviation for more complex cases and improvements are needed. The challenges of using the system in busy interventional rooms have informed the future needs and applicability of PODIUM. The availability of an online personal dosimetry application has the potential to overcome problems that arise from the use of current dosimeters. In addition, it should increase awareness of radiation protection among staff. Some limitations remain and a second phase of development would be required to bring the PODIUM method into operation in a hospital setting. However, an early prototype system has been tested in a clinical setting and the results from this two-year proof-of-concept PODIUM project are very promising for future development.Peer ReviewedPostprint (published version

    Atypical genomic cortical patterning in autism with poor early language outcome.

    Get PDF
    Cortical regionalization develops via genomic patterning along anterior-posterior (A-P) and dorsal-ventral (D-V) gradients. Here, we find that normative A-P and D-V genomic patterning of cortical surface area (SA) and thickness (CT), present in typically developing and autistic toddlers with good early language outcome, is absent in autistic toddlers with poor early language outcome. Autistic toddlers with poor early language outcome are instead specifically characterized by a secondary and independent genomic patterning effect on CT. Genes involved in these effects can be traced back to midgestational A-P and D-V gene expression gradients and different prenatal cell types (e.g., progenitor cells and excitatory neurons), are functionally important for vocal learning and human-specific evolution, and are prominent in prenatal coexpression networks enriched for high-penetrance autism risk genes. Autism with poor early language outcome may be explained by atypical genomic cortical patterning starting in prenatal development, which may detrimentally affect later regional functional specialization and circuit formation
    corecore