25 research outputs found
Mantle to surface degassing of alkalic magmas at Erebus volcano, Antarctica
International audienceContinental intraplate volcanoes, such as Erebus volcano, Antarctica, are associated with extensional tectonics, mantle upwelling and high heat flow. Typically, erupted magmas are alkaline and rich in volatiles (especially CO2), inherited from low degrees of partial melting of mantle sources. We examine the degassing of the magmatic system at Erebus volcano using melt inclusion data and high temporal resolution open-path Fourier transform infrared (FTIR) spectroscopic measurements of gas emissions from the active lava lake. Remarkably different gas signatures are associated with passive and explosive gas emissions, representative of volatile contents and redox conditions that reveal contrasting shallow and deep degassing sources. We show that this unexpected degassing signature provides a unique probe for magma differentiation and transfer of CO2-rich oxidised fluids from the mantle to the surface, and evaluate how these processes operate in time and space. Extensive crystallisation driven by CO2 fluxing is responsible for isobaric fractionation of parental basanite magmas close to their source depth. Magma deeper than 4 kbar equilibrates under vapour-buffered conditions. At shallower depths, CO2-rich fluids accumulate and are then released either via convection-driven, open-system gas loss or as closed-system slugs that ascend and result in Strombolian eruptions in the lava lake. The open-system gases have a reduced state (below the QFM buffer) whereas the closed-system gases preserve their deep oxidised signatures (close to the NNO buffer)
Pre- and syn-eruptive degassing and crystallisation processes of the 2010 and 2006 eruptions of Merapi volcano, Indonesia
The 2010 eruption of Merapi (VEI 4) was the volcanoâs largest since 1872. In contrast to the prolonged and effusive dome-forming eruptions typical of Merapiâs recent activity, the 2010 eruption began explosively, before a new dome was rapidly emplaced. This new dome was subsequently destroyed by explosions, generating pyroclastic density currents (PDCs), predominantly consisting of dark coloured, dense blocks of basaltic andesite dome lava. A shift towards open-vent conditions in the later stages of the eruption culminated in multiple explosions and the generation of PDCs with conspicuous grey scoria and white pumice clasts resulting from sub-plinian convective column collapse. This paper presents geochemical data for melt inclusions and their clinopyroxene hosts extracted from dense dome lava, grey scoria and white pumice generated during the peak of the 2010 eruption. These are compared with clinopyroxene-hosted melt inclusions from scoriaceous dome fragments from the prolonged dome-forming 2006 eruption, to elucidate any relationship between pre-eruptive degassing and crystallisation processes and eruptive style. Secondary ion mass spectrometry analysis of volatiles (H2O, CO2) and light lithophile elements (Li, B, Be) is augmented by electron microprobe analysis of major elements and volatiles (Cl, S, F) in melt inclusions and groundmass glass. Geobarometric analysis shows that the clinopyroxene phenocrysts crystallised at depths of up to 20 km, with the greatest calculated depths associated with phenocrysts from the white pumice. Based on their volatile contents, melt inclusions have re-equilibrated during shallower storage and/or ascent, at depths of ~0.6â9.7 km, where the Merapi magma system is interpreted to be highly interconnected and not formed of discrete magma reservoirs. Melt inclusions enriched in Li show uniform âbufferedâ Cl concentrations, indicating the presence of an exsolved brine phase. Boron-enriched inclusions also support the presence of a brine phase, which helped to stabilise B in the melt. Calculations based on S concentrations in melt inclusions and groundmass glass require a degassing melt volume of 0.36 km3 in order to produce the mass of SO2 emitted during the 2010 eruption. This volume is approximately an order of magnitude higher than the erupted magma (DRE) volume. The transition between the contrasting eruptive styles in 2010 and 2006 is linked to changes in magmatic flux and changes in degassing style, with the explosive activity in 2010 driven by an influx of deep magma, which overwhelmed the shallower magma system and ascended rapidly, accompanied by closed-system degassing
Crystal-size dependence of illite-smectite isotope equilibration with changing fluids
Differences in equilibration rates among crystals of different sizes may be used to deduce paleofluid changes over time if the crystal-growth mechanism is known. To explore isotopic equilibration rates as a function of illite growth, we studied B-isotope changes during illitization of smectite. Montmorillonite (2.0 Όm) fractions. The isotopic composition of B in the tetrahedral sheet was then measured for comparison with the predicted equilibrium values. The fine fraction showed equilibrium isotope ratios within 10 days, indicating that small, newly nucleated crystals precipitate in equilibrium with the fluid under supersaturated, closed conditions. These fine-fraction minerals did not re-equilibrate when the fluid was changed. The medium fraction gradually equilibrated with the initial fluid as illite grew to values >50%, but did not re-equilibrate with the later fluid. The coarse fraction was slow to begin recrystallization, perhaps due to dissolution kinetics of large crystals or the presence of detrital contaminants. However, it showed the fastest rate of isotopic change with crystal growth after R1 ordering. We conclude that at 300°C, the initial B-O bonds formed in illite are stable, and isotopic re-equilibration only occurs on new crystal growth. Therefore, different isotope ratios are preserved in different crystal size fractions due to different rates of crystal growth. Large crystals may reflect equilibrium with recent fluid while smaller crystals may retain isotope compositions reflecting equilibrium with earlier fluids
Hydrogen partitioning between melt, clinopyroxene, and garnet at 3 GPa in a hydrous MORB with 6 wt.% H2O
International audienceAbstract To understand partitioning of hydrogen between hydrous basaltic and andesitic liquids and coexisting clinopyroxene and garnet, experiments using a midocean ridge basalt (MORB) + 6 wt.% H2O were conducted at 3 GPa and 1,150â1,325°C. These included both isothermal and controlled cooling rate crystallization experiments, as crystals from the former were too small for ion microprobe (SIMS) analyses. Three runs at lower bulk water content are also reported. H2O was measured in minerals by SIMS and in glasses by SIMS, Fourier Transform infrared spectroscopy (FTIR), and from oxide totals of electron microprobe (EMP) analyses. At 3 GPa, the liquidus for MORB with 6 wt.% H2O is between 1,300 and 1,325C. In the temperature interval investigated, the melt proportion varies from 100 to 45% and the modes of garnet and clinopyroxene are nearly equal. Liquid composition varies from basaltic to andesitic. The crystallization experiments starting from above the liquidus failed to nucleate garnets, but those starting from below the liquidus crystallized both garnet and clinopyroxene. SIMS analyses of glasses with [7 wt.% H2O yield spuriously low concentrations, perhaps owing to hydrogen degassing in the ultra-high vacuum of the ion microprobe sample chamber. FTIR and EMP analyses show that the glasses have 3.4 to 11.9 wt.% water, whilst SIMS analyses indicate that clinopyroxenes have 1,340â2,330 ppm and garnets have 98â209 ppm H2O. DH cpx-gt is 11 ± 3, DH cpx-melt is 0.023 ± 0.005 and DH gt-melt is 0.0018 ± 0.0006. Most garnet/melt pairs have low values of DH gt-melt, but DH gt-melt increases with TiO2 in the garnet. As also found by previous studies, values of DH cpx-melt increase with Al2O3 of the crystal. For garnet pyroxenite, estimated values of DH pyroxenite-melt decrease from 0.015 at 2.5 GPa to 0.0089 at 5 GPa. Hydration will increase the depth interval between pyroxenite and peridotite solidi for mantle upwelling beneath ridges or oceanic islands. This is partly because the greater pyroxene/olivine ratio in pyroxenite will tend to enhance the H2O concentration of pyroxenite, assuming that neighboring pyroxenite and peridotite bodies have similar H2O in their pyroxenes
Hydrogen Isotope Composition of a Large Silicic Magma Reservoir Preserved in QuartzâHosted Glass Inclusions of the Bishop Tuff Plinian Eruption
Abstract Water controls magmatic crystallization and drives volcanic eruptions, but little is known about its primary source in silicic systems. The hydrogen isotope composition of volcanic products provides a metric that can track and identify magmatic source, fractionation, or degassing processes. Despite such promise, hydrogen isotope measurements have never previously been acquired for undegassed silicic melt. To explore whether hydrogen isotopes can identify the source and modification of water in a silicic magma reservoir, we analyzed D/H ratios and dissolved H2O content of quartzâhosted, rhyolitic glass inclusions from the early Bishop Tuff, a timeâhonored testing ground for innovative petrologic studies. The rhyolitic inclusions indicate the early Bishop reservoir had ÎŽD values ranging from â40â° to â60â° (Vienna Standard Mean Ocean Water). The measured hydrogen isotope ratios do not follow systematic trends that would be predicted for openâsystem degassing, rehydration, or diffusive loss. Observed isotopic variability in the microanalyses is instead attributed to analytical artifacts. The large silicic reservoir degassed as a closed system, resulting in limited fractionation obscured by the uncertainty of the measurements. Significant modification of melt D/H ratios by assimilation and fractional crystallization are unlikely, as their projected contributions are not observed. Dynamic geologic processes are thus not recorded by the hydrogen isotope composition of the inclusions. Instead, the rhyolitic melt represents a distinct, largely homogenous isotopic reservoir. When compared to the global record of basaltic glass inclusions, the rhyolitic inclusions preserve an isotopic signature that is most similar to subductionârelated mafic melts
Tracking Radionuclide Fractionation in the First Atomic Explosion Using Stable Elements
Compositional
analysis of postdetonation fallout is a tool for
forensic identification of nuclear devices. However, the relationship
between device composition and fallout composition is difficult to
interpret because of the complex combination of physical mixing, nuclear
reactions, and chemical fractionations that occur in the chaotic nuclear
fireball. Using a combination of in situ microanalytical techniques (electron
microprobe analysis and secondary ion mass spectrometry), we show
that some heavy stable elements (Rb, Sr, Zr, Ba, Cs, Ba, La, Ce, Nd,
Sm, Dy, Lu, U, Th) in glassy fallout from the first nuclear test,
Trinity, are reliable chemical proxies for radionuclides generated
during the explosion. Stable-element proxies show that radionuclides
from the Trinity device were chemically, but not isotopically, fractionated
by condensation. Furthermore, stable-element proxies delineate chemical
fractionation trends that can be used to connect present-day fallout
composition to past fireball composition. Stable-element proxies therefore
offer a novel approach for elucidating the phenomenology of the nuclear
fireball as it relates to the formation of debris and the fixation
of device materials within debris
Methods for <I>in situ</I> SIMS microanalysis of boron and its isotopes in palagonite
Boron has been shown to be a useful trace element in clay-mineralization reactions, raising the possibility that B studies may provide a means to investigate environmental controls on palagonitization. The objective of the present study was to address calibration, matrix effects, and B exchangeability issues such that meaningful secondary ion mass spectrometry (SIMS) microanalysis of B in thin sections of palagonite will be feasible. Silver Hill illite (IMt-1) was found to be a suitable calibration reference material, based on compositional similarity, relatively high B content, and ease of mounting on thin-section samples for SIMS microanalysis. Matrix effects of borated sideromelane and illite were compared and found to be similar, confirming previous studies which showed no matrix effects for B among minerals. Boron substitutes for Si in tetrahedral sites and also can be adsorbed in exchangeable sites of 2:1 clay minerals. Similarly, B can be found in tetrahedral and exchangeable sites within palagonite, which consists of both layered and amorphous volumes. In order to measure tetrahedral B content and isotopic ratio in the palagonite, exchangeable B was removed by soaking sample thin sections in a 1 M NH4Cl solution until exchangeable cation concentrations were constant. Treated samples showed decreases in B content and isotopic ratio with exchange. Extraction of exchangeable B permits the direct measurement of tetrahedral B content and isotopic ratio. The exchange technique devised and tested here should have broad applicability to thin-section microanalysis of B in clay and clay-like materials where cation exchange can be used for surface-analytical techniques. The present study represents an initial attempt to address sample-preparation, calibration, and potential matrix-effects problems for analyses by SIMS. Further refinements may improve the accuracy of the measurements, but the results presented here indicate that meaningful measurements are possible
Stability of Zircon and Its Isotopic Ratios in High-Temperature Fluids: Long-Term (4 months) Isotope Exchange Experiment at 850°C and 50 MPa
Stability of zircon in hydrothermal fluids and vanishingly slow rates of diffusion identify zircon as a reliable recorder of its formation conditions in recent and ancient rocks. Debate, however, persists on how rapidly oxygen and key trace elements (e.g., Li, B, Pb) diffuse when zircon is exposed to silicate melt or hot aqueous fluids. Here, we report results of a nano- to micrometer-scale investigation of isotopic exchange using natural zircon from Mesa Falls Tuff (Yellowstone) treated with quartz-saturated, isotopically (18O, D, 7Li, and 11B) labeled water with a nominal ÎŽ18O value of +450%0 over 4 months at 850°C and 50 MPa. Frontside (crystal rim inwards) ÎŽ18O depth profiling of zircon by magnetic sector SIMS shows initially high but decreasing 18O/16O over a ~130 nm non-Fickian profile, with a decay length comparable to the signal from surficial Au coating deposited onto zircon. In contrast, backside (crystal interior outwards) depth profiling on a 2-3 ÎŒm thick wafer cut and thinned from treated zircon by focused ion beam (FIB) milling lacks any significant increase in 18O/16O during penetration of the original surface layer. Near-surface time-of-flight (TOF-SIMS) frontside profiles of uncoated zircon from 4-month and 1-day-long experiments as well as untreated zircons display similar enrichments of 18O over a distance of ~20 nm. All frontside 18O profiles are here interpreted as transient surface signals from nm-thick surface enrichment or contamination unrelated to diffusion. Likewise, frontside depth profiling of H, Li, and B isotopes are similar for long- and short-duration experiments. Additionally, surface U-Pb dating of zircon from the 4-month experiment returned U-Pb ages by depth profiling with ~1 ÎŒm penetration that were identical to untreated samples. Frontside and backside depth-profiling thus demonstrate that diffusive 18O enrichment in the presence of H2O is much slower than predicted from experiments in Watson and Cherniak (1997). Instead, intracrystalline exchange of oxygen between fluid and zircon in wet experimental conditions with excess silica occurred over length-scales equivalent to those predicted for dry diffusion. Oxygen diffusion coefficients even under wet conditions and elevated temperatures (850°C) are †1â3 Ă 10â23 m2/s, underscoring a virtual lack of oxygen diffusion and an outstanding survivability of zircons and its isotopic inventory under most metamorphic and hydrothermal conditions
Table_1_Stability of Zircon and Its Isotopic Ratios in High-Temperature Fluids: Long-Term (4 months) Isotope Exchange Experiment at 850°C and 50 MPa.XLS
<p>Stability of zircon in hydrothermal fluids and vanishingly slow rates of diffusion identify zircon as a reliable recorder of its formation conditions in recent and ancient rocks. Debate, however, persists on how rapidly oxygen and key trace elements (e.g., Li, B, Pb) diffuse when zircon is exposed to silicate melt or hot aqueous fluids. Here, we report results of a nano- to micrometer-scale investigation of isotopic exchange using natural zircon from Mesa Falls Tuff (Yellowstone) treated with quartz-saturated, isotopically (<sup>18</sup>O, D, <sup>7</sup>Li, and <sup>11</sup>B) labeled water with a nominal ÎŽ<sup>18</sup>O value of +450%0 over 4 months at 850°C and 50 MPa. Frontside (crystal rim inwards) ÎŽ<sup>18</sup>O depth profiling of zircon by magnetic sector SIMS shows initially high but decreasing <sup>18</sup>O/<sup>16</sup>O over a ~130 nm non-Fickian profile, with a decay length comparable to the signal from surficial Au coating deposited onto zircon. In contrast, backside (crystal interior outwards) depth profiling on a 2-3 ÎŒm thick wafer cut and thinned from treated zircon by focused ion beam (FIB) milling lacks any significant increase in <sup>18</sup>O/<sup>16</sup>O during penetration of the original surface layer. Near-surface time-of-flight (TOF-SIMS) frontside profiles of uncoated zircon from 4-month and 1-day-long experiments as well as untreated zircons display similar enrichments of <sup>18</sup>O over a distance of ~20 nm. All frontside <sup>18</sup>O profiles are here interpreted as transient surface signals from nm-thick surface enrichment or contamination unrelated to diffusion. Likewise, frontside depth profiling of H, Li, and B isotopes are similar for long- and short-duration experiments. Additionally, surface U-Pb dating of zircon from the 4-month experiment returned U-Pb ages by depth profiling with ~1 ÎŒm penetration that were identical to untreated samples. Frontside and backside depth-profiling thus demonstrate that diffusive <sup>18</sup>O enrichment in the presence of H<sub>2</sub>O is much slower than predicted from experiments in Watson and Cherniak (1997). Instead, intracrystalline exchange of oxygen between fluid and zircon in wet experimental conditions with excess silica occurred over length-scales equivalent to those predicted for dry diffusion. Oxygen diffusion coefficients even under wet conditions and elevated temperatures (850°C) are †1â3 Ă 10<sup>â23</sup> m<sup>2</sup>/s, underscoring a virtual lack of oxygen diffusion and an outstanding survivability of zircons and its isotopic inventory under most metamorphic and hydrothermal conditions.</p