346 research outputs found

    A tale of reviews in two history of science journals

    Get PDF
    This paper examines the role of book reviews in the discipline of the history of science by comparing their appearance in two periodicals, Isis, the flagship journal of the discipline that was founded in 1913, and the Journal for the History of Astronomy, founded in 1970 to serve a newly emerging, specialized subfield within the broader discipline. Our analysis of the reviews published in selected slices of time finds differing norms and reviewing practices within the two journals. Despite important changes during the past century in the conceptualization of the history of science and its research methods, reviewing practices in Isis remained remarkably consistent over time, with reviewers generally defending a fixed set of norms for “good” scholarship. More change appears in reviews of the Journal for the History of Astronomy, as its audience shifted from a mix of the laity, working astronomers, and historians to a specialized group of professional historians of astronomy. Scholarly norms, reflected in the reviews, shifted with these changes in readership. We conclude that book reviews offer rich sources for analyzing the evolution of scholarly disciplines and norms.Analiza recenzji w dwóch czasopismach z historii nauki W artykule przeanalizowano rolę recenzji książek w dyscyplinie historia nauki, porównując ich występowanie w dwóch czasopismach, Isis, flagowym czasopiśmie dyscypliny założonej w 1913 r., oraz Journal for the History of Astronomy, założonym w 1970 r. służącego nowo powstającej, wyspecjalizowanej poddziedzinie w ramach szerszej dyscypliny. Nasza analiza recenzji opublikowanych w wybranych wycinkach czasu wskazuje na różne normy i praktyki recenzowania w obu czasopismach. Pomimo ważnych zmian, jakie dokonały się w ciągu ostatniego stulecia w konceptualizacji historii nauki i jej metodach badawczych, praktyki recenzowania w Isis pozostawały z biegiem czasu niezwykle spójne, a recenzenci generalnie bronili ustalonego zestawu norm dotyczących „dobrej” nauki. Więcej zmian pojawia się w recenzjach czasopisma Journal for the History of Astronomy, gdy uległa zmianie jego publiczność od mieszanki laików: pracujących astronomów i historyków do wyspecjalizowanej grupy zawodowych historyków astronomii. Wraz z tymi zmianami czytelnictwa zmieniały się normy naukowe, odzwierciedlone w recenzjach. Dochodzimy do wniosku, że recenzje książek stanowią bogate źródła do analizy ewolucji dyscyplin i norm naukowych

    Two infrared Yang-Mills solutions in stochastic quantization and in an effective action formalism

    Get PDF
    Three decades of work on the quantum field equations of pure Yang-Mills theory have distilled two families of solutions in Landau gauge. Both coincide for high (Euclidean) momentum with known perturbation theory, and both predict an infrared suppressed transverse gluon propagator, but whereas the solution known as "scaling" features an infrared power law for the gluon and ghost propagators, the "massive" solution rather describes the gluon as a vector boson that features a finite Debye screening mass. In this work we examine the gauge dependence of these solutions by adopting stochastic quantization. What we find, in four dimensions and in a rainbow approximation, is that stochastic quantization supports both solutions in Landau gauge but the scaling solution abruptly disappears when the parameter controlling the drift force is separated from zero (soft gauge-fixing), recovering only the perturbative propagators; the massive solution seems to survive the extension outside Landau gauge. These results are consistent with the scaling solution being related to the existence of a Gribov horizon, with the massive one being more general. We also examine the effective action in Faddeev-Popov quantization that generates the rainbow and we find, for a bare vertex approximation, that the the massive-type solutions minimise the quantum effective action.Comment: 13 pages, 7 figures. Change of title to reflect version accepted for publicatio

    An integrated gene regulatory network controls stem cell proliferation in teeth.

    Get PDF
    Epithelial stem cells reside in specific niches that regulate their self-renewal and differentiation, and are responsible for the continuous regeneration of tissues such as hair, skin, and gut. Although the regenerative potential of mammalian teeth is limited, mouse incisors grow continuously throughout life and contain stem cells at their proximal ends in the cervical loops. In the labial cervical loop, the epithelial stem cells proliferate and migrate along the labial surface, differentiating into enamel-forming ameloblasts. In contrast, the lingual cervical loop contains fewer proliferating stem cells, and the lingual incisor surface lacks ameloblasts and enamel. Here we have used a combination of mouse mutant analyses, organ culture experiments, and expression studies to identify the key signaling molecules that regulate stem cell proliferation in the rodent incisor stem cell niche, and to elucidate their role in the generation of the intrinsic asymmetry of the incisors. We show that epithelial stem cell proliferation in the cervical loops is controlled by an integrated gene regulatory network consisting of Activin, bone morphogenetic protein (BMP), fibroblast growth factor (FGF), and Follistatin within the incisor stem cell niche. Mesenchymal FGF3 stimulates epithelial stem cell proliferation, and BMP4 represses Fgf3 expression. In turn, Activin, which is strongly expressed in labial mesenchyme, inhibits the repressive effect of BMP4 and restricts Fgf3 expression to labial dental mesenchyme, resulting in increased stem cell proliferation and a large, labial stem cell niche. Follistatin limits the number of lingual stem cells, further contributing to the characteristic asymmetry of mouse incisors, and on the basis of our findings, we suggest a model in which Follistatin antagonizes the activity of Activin. These results show how the spatially restricted and balanced effects of specific components of a signaling network can regulate stem cell proliferation in the niche and account for asymmetric organogenesis. Subtle variations in this or related regulatory networks may explain the different regenerative capacities of various organs and animal species

    A multi-parametric flow cytometric assay to analyze DNA–protein interactions

    Get PDF
    Interactions between DNA and transcription factors (TFs) guide cellular function and development, yet the complexities of gene regulation are still far from being understood. Such understanding is limited by a paucity of techniques with which to probe DNA–protein interactions. We have devised magnetic protein immobilization on enhancer DNA (MagPIE), a simple, rapid, multi-parametric assay using flow cytometric immunofluorescence to reveal interactions among TFs, chromatin structure and DNA. In MagPIE, synthesized DNA is bound to magnetic beads, which are then incubated with nuclear lysate, permitting sequence-specific binding by TFs, histones and methylation by native lysate factors that can be optionally inhibited with small molecules. Lysate protein–DNA binding is monitored by flow cytometric immunofluorescence, which allows for accurate comparative measurement of TF-DNA affinity. Combinatorial fluorescent staining allows simultaneous analysis of sequence-specific TF-DNA interaction and chromatin modification. MagPIE provides a simple and robust method to analyze complex epigenetic interactions in vitro

    Adenomatous Polyposis Coli (APC) Is Required for Normal Development of Skin and Thymus

    Get PDF
    The tumor suppressor gene Apc (adenomatous polyposis coli) is a member of the Wnt signaling pathway that is involved in development and tumorigenesis. Heterozygous knockout mice for Apc have a tumor predisposition phenotype and homozygosity leads to embryonic lethality. To understand the role of Apc in development we generated a floxed allele. These mice were mated with a strain carrying Cre recombinase under the control of the human Keratin 14 (K14) promoter, which is active in basal cells of epidermis and other stratified epithelia. Mice homozygous for the floxed allele that also carry the K14-cre transgene were viable but had stunted growth and died before weaning. Histological and immunochemical examinations revealed that K14-cre–mediated Apc loss resulted in aberrant growth in many ectodermally derived squamous epithelia, including hair follicles, teeth, and oral and corneal epithelia. In addition, squamous metaplasia was observed in various epithelial-derived tissues, including the thymus. The aberrant growth of hair follicles and other appendages as well as the thymic abnormalities in K14-cre; Apc(CKO/CKO) mice suggest the Apc gene is crucial in embryonic cells to specify epithelial cell fates in organs that require epithelial–mesenchymal interactions for their development

    Roles of the 15-kDa Selenoprotein (Sep15) in Redox Homeostasis and Cataract Development Revealed by the Analysis of Sep 15 Knockout Mice

    Get PDF
    The 15-kDa selenoprotein (Sep15) is a thioredoxin-like, endoplasmic reticulum-resident protein involved in the quality control of glycoprotein folding through its interaction with UDP-glucose:glycoprotein glucosyltransferase. Expression of Sep15 is regulated by dietary selenium and the unfolded protein response, but its specific function is not known. In this study, we developed and characterized Sep15 KO mice by targeted removal of exon 2 of the Sep15 gene coding for the cysteinerich UDP-glucose:glycoprotein glucosyltransferase-binding domain. These KO mice synthesized a mutant mRNA, but the shortened protein product could be detected neither in tissues nor in Sep15 KO embryonic fibroblasts. Sep15 KO mice were viable and fertile, showed normal brain morphology, and did not activate endoplasmic reticulum stress pathways. However, parameters of oxidative stress were elevated in the livers of these mice. We found that Sep15 mRNA was enriched during lens development. Further phenotypic characterization of Sep15KO mice revealed a prominent nuclear cataract that developed at an early age. These cataracts did not appear to be associated with severe oxidative stress or glucose dysregulation.Wesuggest that the cataracts resulted from an improper folding status of lens proteins caused by Sep15 deficiency

    Roles of the 15-kDa Selenoprotein (Sep15) in Redox Homeostasis and Cataract Development Revealed by the Analysis of Sep 15 Knockout Mice

    Get PDF
    The 15-kDa selenoprotein (Sep15) is a thioredoxin-like, endoplasmic reticulum-resident protein involved in the quality control of glycoprotein folding through its interaction with UDP-glucose:glycoprotein glucosyltransferase. Expression of Sep15 is regulated by dietary selenium and the unfolded protein response, but its specific function is not known. In this study, we developed and characterized Sep15 KO mice by targeted removal of exon 2 of the Sep15 gene coding for the cysteinerich UDP-glucose:glycoprotein glucosyltransferase-binding domain. These KO mice synthesized a mutant mRNA, but the shortened protein product could be detected neither in tissues nor in Sep15 KO embryonic fibroblasts. Sep15 KO mice were viable and fertile, showed normal brain morphology, and did not activate endoplasmic reticulum stress pathways. However, parameters of oxidative stress were elevated in the livers of these mice. We found that Sep15 mRNA was enriched during lens development. Further phenotypic characterization of Sep15KO mice revealed a prominent nuclear cataract that developed at an early age. These cataracts did not appear to be associated with severe oxidative stress or glucose dysregulation.Wesuggest that the cataracts resulted from an improper folding status of lens proteins caused by Sep15 deficiency
    corecore