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Abstract

Embryonic stem (ES) cells provide a potentially useful in vitro model for the study of

in vivo tissue differentiation. We used mouse and human ES cells to investigate

whether the lens regulatory genes Pax6 and Six3 could induce lens cell fate in vitro.

To help assess the onset of lens differentiation, we derived a new mES cell line

(Pax6-GFP mES) that expresses a GFP reporter under the control of the Pax6 P0

promoter and lens ectoderm enhancer. Pax6 or Six3 expression vectors were

introduced into mES or hES cells by transfection or lentiviral infection and the

differentiating ES cells analyzed for lens marker expression. Transfection of mES

cells with Pax6 or Six3 but not with other genes induced the expression of lens cell

markers and up-regulated GFP reporter expression in Pax6-GFP mES cells by 3

days post-transfection. By 7 days post-transfection, mES cell cultures exhibited

a.10-fold increase over controls in the number of colonies expressing cA-

crystallin, a lens fiber cell differentiation marker. RT-PCR and immunostaining

revealed induction of additional lens epithelial or fiber cell differentiation markers

including Foxe3, Prox1, a- and b-crystallins, and Tdrd7. Moreover, cA-crystallin- or

Prox1-expressing lentoid bodies formed by 30 days in culture. In hES cells, Pax6 or

Six3 lentiviral vectors also induced lens marker expression. mES cells that express
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lens markers reside close to but are distinct from the Pax6 or Six3 transduced cells,

suggesting that the latter induce nearby undifferentiated ES cells to adopt a lens

fate by non-cell autonomous mechanisms. In sum, we describe a novel mES cell

GFP reporter line that is useful for monitoring induction of lens fate, and

demonstrate that Pax6 or Six3 is sufficient to induce ES cells to adopt a lens fate,

potentially via non-cell autonomous mechanisms. These findings should facilitate

investigations of lens development.

Introduction

The ability to direct ES and induced pluripotent stem (iPS) cell differentiation

toward specific tissue fates in vitro provides an excellent opportunity to investigate

the gene regulatory networks (GRNs) that operate during organ development

[1, 2]. While ES and iPS cells hold promise for cell-based therapies, only in a

handful of cases is molecular information detailed enough to guide directed

differentiation to specific tissue types. The developing vertebrate ocular lens offers

a potential system for such approaches, as considerable knowledge exists about the

cascade of transcription factors, signaling molecules and cell-cell interactions

necessary for head surface ectoderm to develop into a mature optically clear lens

[3–5]. This process is accompanied by the stepwise specification of the pre-

placodal region (PPR) into an anterior sensory placode (ASP) domain and then a

pseudostratified ectodermal lens placode. Thereafter, progression through the lens

pit and lens vesicle stages occurs, culminating in formation of the lens proper [4].

From this stage on, the lens consists of anteriorly localized cells, termed the

anterior epithelium of the lens (AEL), that terminally differentiate into posteriorly

localized elongated fiber cells.

Numerous studies demonstrate that lens differentiation involves the action of a

conserved GRN that is initiated by a specific set of regulatory genes that includes

Pax6 and Six3 [5–8]. Targeted mis-expression in Drosophila of mouse or fly Pax6

that encodes a conserved paired domain and homeodomain containing

transcription factor results in multiple ectopic ommatidial structures on the

antenna, wings and halteres [9]. In addition, Pax6 mis-expression in Xenopus

results in ectopic eye structures that include lens-like tissue termed ‘‘lentoids’’, as

well as retinal tissue [6–8]. The formation of ectopic lentoids in the nasal

periocular ectoderm is also noted in mice with conditional deletion of beta-

catenin, suggesting that canonical Wnt signaling normally represses lens fate [10].

Thus, repression of canonical Wnt signaling in the surface ectoderm is critical for

lens development, and Pax6 has been demonstrated to directly control expression

of several Wnt inhibitors in the presumptive lens ectoderm [11]. Conversely, Pax6

haploinsufficiency in mice results in the Small eye and cataract phenotypes, and

nullizygosity results in a failure of lens placode induction and anophthalmia [12–

17]. Similarly, PAX6 haploinsufficiency in humans results in the pan-ocular eye

Lens Induction of Embryonic Stem Cells by Pax6 and Six3

PLOS ONE | DOI:10.1371/journal.pone.0115106 December 17, 2014 2 / 15



disorder aniridia that manifests as cataracts, corneal opacification, and retinal

anomalies, while compound heterozygosity for PAX6 loss-of-function causes

anophthalmia [18–22]. Thus, Pax6 appears to function as a key regulatory gene

for metazoan eye development, acting as one of several ‘eye specification’ genes

that function in an interconnected, non-linear GRN with feedback and

autoregulatory circuits.

A second eye specification gene is the Drosophila homeobox gene sine oculis

(so); its presumptive vertebrate orthologue is Six3. Ectopic expression of mouse

Six3 in Medaka fish (Oryzias latipes) results in ectopic lentoid formation,

presumably by activation of Pax6 expression in the presumptive lens ectoderm,

while Six3 deficiency in mice results in defective lens induction [8, 23].

Collectively these observations support a key, evolutionarily conserved regulatory

function of Pax6 and Six3 in metazoan eye development that extends to vertebrate

lens induction [24]. Given the conserved role for these two ocular developmental

regulators, we hypothesized that ES cells might provide an attractive system to

investigate early vertebrate ocular and lens regulatory mechanisms in vitro.

Previous studies have shown that both mouse and primate (Cynomolgus

monkey) ES cells possess the ability to differentiate into lentoids upon prolonged

culture in vitro. In these studies, the induction of lentoid formation, defined by a

characteristic 3-D morphology and the expression of lens markers, involved the

upregulation of Pax6-expression in differentiating ES cells co-cultured with a

stromal cell feeder layer. For example, these cells have been reported to provide

stromal cell-derived inducible factors that promote the differentiation of

pluripotent stem cells to neuronal pigmented epithelial cell fates [25–27].

Two additional reports describe the induction of lens progenitors and lentoids

from hES cells and from iPS cells derived from cataract patients using chemically

defined protocol [28, 29]. These investigations used a three-step protocol that was

based on known signaling requirements in lens development, and achieved

efficient induction of lentoid bodies. Collectively, these studies show that ES cells

from at least three species - rodent, human, and non-human primate - possess

lens forming potential, and suggest a clear role for extrinsic signals in this process.

In the case of rodent and non-human primate cells, culture with a stromal feeder

layer resulted in increased Pax6 expression in differentiating cells and in the

development of lentoid like structures [25–27], while in the hES cell protocol,

PAX6 and SIX3 expression were documented as key early responses in lentoid

induction [28, 29]. Given these results, we sought to investigate whether Pax6

itself, alone or in combination with Six3, could directly induce the expression of

lens fate in mES and hES cells. We further sought to determine whether this

process occurred in a cell autonomous or non-cell autonomous fashion.

Lens Induction of Embryonic Stem Cells by Pax6 and Six3
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Materials and Methods

Ethics Statement

All experiments involving derivation of cell lines from any animals was done with

the approval of and in accordance with the Harvard University IACUC Approved

protocol number 750 (RLM)

Derivation of Pax6-GFP reporter mES cells

A novel mES cell line, designated Pax6-GFP mES (FVB/N mice) was derived from

the previously described transgenic mouse line Pax6-GFP Cre, (P0-3.9-GFPCre

mice on an FVB background) which expresses GFP reporter under the control of

the Pax6 P0 3.9 ectoderm enhancer (Pax6 EE-GFP) [30, 31] (S1A Figure). All

animal studies were conducted in accordance with protocols defined in the ARVO

Statement for the Use of Animals in Ophthalmic and Vision Research and

approved by the Animal Care and Use Committee of Harvard Medical School

(Boston, MA). Blastocysts from these mice were isolated using standard protocols

and the inner cell mass was manually separated and cultured with mES cell media

on mitotically inactivated mouse embryonic fibroblasts (MEFs). Based on

morphologic appearance, presumptive Pax6-GFP mES colonies were picked,

clonally expanded and characterized by immunohistochemistry, RT-PCR analysis,

and differentiation assays, to confirm their stem cell identity (Fig. 1A–L).

Embryonic stem cell and feeder cell sources

Mouse R1 and G4 ES cells were obtained from the Samuel Lunenfeld Research

Institute (Mt. Sinai Hospital, University of Toronto, Toronto, Canada). Human

H1 ES cells were obtained from the National Stem Cell Bank (WiCell, Madison,

WI). MEFs from E13.5 mouse embryos were treated with mitomycin C and used

as feeders for mouse G4 ESCs and Pax6-GFP mES cells, while gamma-irradiated

MEFs were prepared in house or purchased (Global Stem, Inc., Rockville, MD)

and used as feeders for H1 hES cells. Feeder preparation and ES cell culture were

performed using standard methods [32–34].

Pax6 and Six3 expression plasmids and lentiviral vectors

Expression plasmids

Mouse Pax6 or Six3 cDNAs were cloned into the pcDNA-DEST47 vector using

the Invitrogen Gateway Cloning System to produce a CMV promoter-driven C

terminal-fused Pax6- or Six3-GFP protein (Invitrogen, Carlsbad, CA). Control

cultures were transfected with pBabe Puro expression plasmid (AddGene,

Cambridge, MA) originally developed by William Hahn [35] (S1B–C Figure).

Lentiviral expression vectors

We used both in- house and commercially prepared lentiviral constructs.

Commercial constructs were obtained from GeneCopoeia (Rockville, MD; http://
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www.genecopoeia.com/). Mouse Pax6 cDNA was cloned into GeneCopoeia ORF

clone EX-Mm04345-Lv33 lentiviral vector construct to produce CMV promoter-

driven Pax6 (IRES) GFP proteins. Mouse Six3 cDNA was cloned into the

GeneCopoeia ORF clone EX-Mm05246-Lv43 lentiviral vector construct (S1D–E

Figure). Additionally, Pax6 cDNA was cloned into an alternate lentiviral vector

HPV570. HPV570 is a self-inactivating, doubly-insulated lentiviral vector that

expresses eGFP from an EF1a promoter [36] (a kind gift of Dr. P. Leboulch). Pax6

cDNA was also cloned into HPV422, a non-insulated lentiviral vector that

contains an IRES eGFP cassette and a WPR sequence, and expressed from an EF1a

promoter [36]. The fragment was cloned between the HpaI and MluI sites of the

lentiviral vector digested with BssHI-HpaI and BssH1-MluI (S1F–G Figure).

Embryonic stem cell culture, Pax6 or Six3 expression vector

transfection and transduction

G4 mES cells were cultured on mitomycin C mitotically inactivated MEFs as

previously described [32, 33] using DMEM (Gibco, Carlsbad, CA)/10%FBS

(HyClone, Logan, UT)/LIF at 106 U/ml (Millipore, Billerica, MA)/0.1 mM b-ME

(Sigma-Aldrich, St. Louis, MO) (henceforth defined as ‘mES cell media’). hES

cells were cultured on gamma-irradiated MEF feeders in 80% DMEM-F12 (Gibco,

Carlsbad, CA)/20% KnockOut Serum Replacement (KOSR, Gibco,)/1 mM L-

glutamine (Gibco, Carlsbad, CA)/0.1 mM b-mercaptoethanol (Sigma-Aldrich, St.

Louis, MO)/4 ng/ml bFGF (Invitrogen, Carlsbad, CA) (henceforth defined as

Fig. 1. Derivation of a Pax6-GFP reporter mES cell line. (A–H) Stem cell identity of new ES cell line confirmed by immunofluorscence for undifferentiated
ES cell markers Oct4, SSEA-1, Nanog, and by histochemical staining for alkaline phosphatase (Alk Phos) activity. (I) Oct4 and Nanog expression confirmed
in two Pax6-GFP mES cell clones by RT-PCR. (J–L) Differentiation of mES cells into mesodermal, neuroectodermal and endodermal derivatives confirmed
by immunofluorscence for smooth muscle actin (SMA), neurofilament (NF), and alpha-fetoprotein (AFP), respectively. (M–T) Pax6-GFP reporter expression
in mES cells detected following transfection with Pax6 (M–O) or Six3 (Q–T) expression vectors 3 days post-transfection. M,O,Q,S, phase contrast; N,P,R,T
GFP detection. Scale bars: A-D, H 40 mm; E-G, J-L 10 mm; M–T 20 mm.

doi:10.1371/journal.pone.0115106.g001
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‘human ES cell media’). Once ES cell cultures were sub-confluent, these cultures

were either transfected with a Pax6 or Six3 expression plasmid or infected with the

appropriate lentiviral vectors. Pax6 and Six3 expression plasmid vectors were

transfected into G4 or Pax6-GFP mES cells using FuGENE 6 (Roche, Madison,

WI). Pax6 and Six3 lentiviral vectors were introduced by infecting cells with

freshly harvested viral supernatant along with 6 mg/ml of polybrene (Millipore,

Billerica, MA). Transfected and transduced ES cells cultures were fixed on days 7,

14, 21, 28 or 30 in vitro using 4% paraformaldehyde/4% sucrose at room

temperature for 15 minutes. The cultures were then processed for immunos-

taining as described below.

Immunostaining of Pax6 and Six3 expressing ES cell cultures

After fixation, Pax6 or Six3 ES cell cultures were incubated at least 2 hours with a

primary antibody for goat polyclonal cA-crystallin (Santa Cruz Biotech., Santa

Cruz, CA;), rabbit polyclonal aB-crystallin (Abcam, Cambridge, MA;), rabbit

polyclonal Prox1 (Covance; PRB), or rabbit polyclonal Tdrd7 [37] at a dilution of

1:100. After 3 washes fixed cultures were incubated at least 1 hour in Alexa Fluor

488 or Alexa Fluor 594 (Invitrogen, Carlsbad, CA) conjugated secondary antibody

at a dilution of 1:1000. After immunostaining was completed, cells were incubated

for 30 minutes in DAPI to visualize nuclei. For antibody specifications, see S1

Table.

Characterization and immunostaining of the Pax6-GFP mES cells

Cultures of Pax6-GFP mES cells were fixed in 4% paraformaldehyde (PFA)/4%

sucrose and processed for immunostaining. Commercial antibodies for Oct4

(ab18976; Abcam, Cambridge, MA), SSEA1 (FCMAB117P; Millipore, Billerica,

MA) and Nanog (ab106465; Abcam, Cambridge, MA), and histochemical reagents

for alkaline phosphatase activity (Sigma-Aldrich, St. Louis, MO) were used for

marker studies. Differentiation of Pax6-GFP mES cells was evaluated by

immunostaining with antibodies to neurofilament (NF, ectoderm) (ab24575;

Abcam, Cambridge, MA), alpha-fetoprotein (AFP, endoderm) (sc-8108; Santa

Cruz Biotech.) and smooth muscle actin (SMA, mesoderm) (ab5694; Abcam,

Cambridge, MA). Primary and secondary antibody immunostaining were

performed as previously described [38]. Controls included omission of primary or

secondary antibody, and comparison of differentiated and undifferentiated cells.

For antibody specifications, see S1 Table.

Polymerase chain reaction (PCR)

Total RNA for RT-PCR analyses was isolated from cell cultures using a Qiagen kit

(Valencia, CA, USA). RT-PCR analyses were performed using primers for stem

cell and lens markers (S2 Table). RT was performed using the qScript cDNA

Synthesis Kit (Quanta Biosciences, Gaithersburg, MD). The RT product was used

Lens Induction of Embryonic Stem Cells by Pax6 and Six3
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in PCR with the GoTaq Core System I (Promega, Fitchburg, WI) for 35

amplification cycles at a 57–60 C̊elsius annealing temperature.

Results

Derivation of a Pax6-GFP reporter mES cell line

To genetically monitor if ES cells could be induced to acquire lens progenitor cell

fate, we first developed a mES cell line that expresses a GFP reporter under the

control of the murine Pax6 P0 promoter and 3.9 kb of upstream sequence that

contains the Pax6 lens ectoderm enhancer or EE [39, 40]. This reporter cell line,

denoted Pax6-GFP mES, was developed from a mouse transgenic line Pax6-GFP

Cre [30, 31] that expresses GFP beginning at E8.75 in presumptive lens ectoderm

under the control of the Pax6 P0 promoter and EE. We isolated the inner cell mass

from blastocysts from this transgenic mouse line and derived ES cells by culturing

them in mES cell media on mitotically inactivated mouse embryonic fibroblasts

(MEF). Morphologically compact Pax6-GFP mES colonies were picked, clonally

expanded and characterized by immunostaining, differentiation assays, and RT-

PCR analysis to confirm their stem cell identity. Immunostaining demonstrated

the expression of the known ES cell markers Oct4, SSEA1 and Nanog (Fig. 1A–

G). Similar to other ES cell lines, cells in Pax6-GFP mES colonies displayed

alkaline phosphatase activity, and immunostaining results were verified by RT-

PCR detection of Oct4 and Nanog expression in two independent Pax6-GFP mES

cell line clones (Fig. 1H–I).

In addition, when allowed to differentiate, these cells generated mesodermal,

ectodermal and endodermal cell types as reflected by immunostaining for smooth

muscle actin (SMA), neurofilament (NF) and alpha-fetoprotein (AFP) (Fig. 1J–

L), respectively. Collectively, these data support the pluripotent capacity of the

Pax6-GFP mES cell line. Lastly, we found that transfection of Pax6 (Fig. 1M–O)

or Six3 (Fig. 1Q–T) up-regulated the Pax6-EE GFP reporter, as evident from GFP

expression as early as 3 days post-transfection (Fig. 1M–T). Thus, we derived a

Pax6-GFP mES cell line that expresses a GFP reporter under the control of the

Pax6 EE.

Expression of Pax6 or Six3 in mES cells induces lens marker

expression

Introduction of Pax6 or Six3 into G4 mES cells via expression plasmid resulted in

a.10-fold increase in the percentage of cA-crystallin immunoreactive mES cell

colonies by 7 days post-treatment compared to G4 mES cells transfected with

control plasmids at similar efficiency (Fig. 2A–G). Similar results were obtained

with lentiviral vector transduction (data not shown).

After 14 days of culture post-transfection, cA-crystallin expression continued to

be detected in these ES cells, mainly in the central portions of individual colonies

(Fig. 3A,E). We also detected expression of other lens fiber cell differentiation

Lens Induction of Embryonic Stem Cells by Pax6 and Six3
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markers, Prox1, aB-crystallin, and Tdrd7 expression by immunostaining in these

cultures at this stage whereas control vectors (LvHPV422 and LvHPV570) and

vectors encoding either of two other genes, Eya1, Ctnnb (encoding b-catenin),

gave negligible staining (Fig. 3B–D,F, and data not shown). These data suggest

that Pax6 and Six3 can induce markers of lens fiber cell fate in mES cells. Tdrd7

expression was observed to be partly granular (Fig. 3D), as previously described

in lens fiber cells [37]. RT-PCR analyses confirmed the transcript expression of

these and other lens expressed genes (Fig. 3G). Thus, expression of either Pax6 or

Six3 induces the expression of lens fiber cell markers.

In addition, beginning as early as 7–14 days post-transfection of mES cells,

distinct cell aggregates of Prox1 (Fig. 3B,F) and cA-crystallin expressing cells were

observed (Fig. 3H–J) at a ratio of ,4 aggregates per 15 mES cell colonies. By 30

days in culture, much larger 3-dimensional aggregates of compacted cA-crystallin

expressing cells could be identified which met the morphological definition of

lentoids (Fig. 3J, K).

Human ES cells express lens markers in response to Pax6 or Six3
transduction

To study whether Pax6 or Six3 could induce lens cell fate in human hES cells, we

used lentiviral vectors to introduce either mouse Pax6 or Six3 into human H1 ES

cells. By 14 and 24 days post-infection, Pax6 lentivirus-infected H1 hES cells

exhibited expression of cA-crystallin, Prox1, and Tdrd7 (Fig. 4A–F), similar to

Fig. 2. Pax6 or Six3 expression in G4 mESC cells induces cA-crystallin expression. (A–B) Control
mESC cultures transfected with vector alone. (C–F) G4 mES cells transfected with (C–D) Pax6 or (E–F) Six3
expression plasmids demonstrate cA-crystallin immunoreactivity by day 7 post-transfection. (G) The number
of cA-crystallin immunoreactive colonies following Pax6- or Six3-transfection is.10-fold more than for vector
controls. Scale bar: A–F 200 mm.

doi:10.1371/journal.pone.0115106.g002
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expression of the homologous mouse proteins in G4 and Pax6-GFP mES cells.

Prox1 expression was detected in Pax6 transduced hES cells (Fig. 4A–C), and so

was Tdrd7, which overlapped with a subset of cA-crystallin expressing cells

(Fig. 4D–F). Note that depending on the type of lens cells Prox1 staining is

observed in both nucleus and cytoplasm [41]. In cells of the lens placode,

epithelium and the germinative zone, Prox1 is predominantly cytoplasmic, while

in differentiating fiber cells it is predominantly nuclear. It is possible that Pax6

lentivirus-infected H1 hES cells are in the process of differentiation and therefore

exhibit staining in both locations. Similar results were obtained with H1 hES cells

transduced with a Six3 expressing lentiviral vector (data not shown), and lens

marker results were also confirmed by RT-PCR (Fig. 4G).

ES cell lens differentiation involves distinct cell populations

Immunohistochemical analyses of G4 mES cell cultures transduced with Pax6- or

Six3-GFP expressing lentivirus suggested that cells expressing either Pax6 or Six3

appeared to induce their neighbors to enter the lens differentiation pathway, but

not necessarily themselves. For example, cells that expressed the Pax6-GFP vector

Fig. 3. Pax6 or Six3 expression in G4 mESC cells induces lens marker expression. (A–F) G4 mES cells transfected with either (A–D) Pax6 or (E,F)
Six3 expression plasmids exhibit cA-crystallin (A,E) and Prox1 (B,F) expression at day 7. Pax6-transfection also results in expression of (C) aB-crystallin,
and (D) Tdrd7. (G) Expression of lens markers in Pax6- and Six3-transfected G4 mESC colonies confirmed by RT-PCR. (H–K) In some cases, cA-crystallin
positive mES cells accumulate in aggregates at days 7–14, with further expansion into lentoid bodies at 30 days (J, phase; K, cA-crystallin
immunofluorscence). Scale bars: A 75 mm; B–F 50 mm; H–I 25 mm; J–K 50 mm.

doi:10.1371/journal.pone.0115106.g003
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localized alongside of but were distinct from cells that expressed cA-crystallin and

Tdrd7 (Fig. 5A–F). Similarly, when Six3-GFP was expressed in G4 mES cells at 21

days post-infection, Six3 GFP expressing cells were often found close to cA-

crystallin positive cells, but the two markers only rarely co-localized to the same

cell (Fig. 5G–I).

Discussion

The differentiation potential of ES cells makes these cells attractive candidates for

cell-based therapies and for unraveling the in vivo mechanisms of tissue-specific

differentiation. A unique attribute of lens development is the fact that key

regulatory genes such as Pax6 and Six3 can induce ocular organogenesis in certain

invertebrates and vertebrates. In this study we demonstrated that expression of

either Pax6 or Six3 is sufficient to initiate lens marker expression and lentoid

formation in differentiating mouse and human ES cells. By way of comparison,

the induction of ES cells to lens fate has also been efficiently achieved by a three

step manipulation of signaling pathways known to act in endogenous lens

Fig. 4. Pax6 or Six3 expression in H1 hES cells induces lens marker expression. (A–F) H1 hES cells
transduced by Pax6 lentiviral vector express (A–C) Prox1 in partly overlapping fashion (C) by 14 days post
transduction. (D–F) By 24 days post-transduction, (D) cA-crystallin and (E) Tdrd7 are expressed, the latter as
cytoplasmic granules. Similar results were obtained following Six3 transduction (not shown). (G) RT-PCR
confirms induction of lens marker gene expression in Pax6- or Six3-transduced H1 hES cells. Scale bars: A–
C 150 mm; D–F 50 mm.

doi:10.1371/journal.pone.0115106.g004
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development [28, 29]. Considered together, these complementary results indicate

that specific aspects of the endogenous lens forming gene regulatory network

(GRN) are recapitulated in the ES cell lens differentiation system.

A novel aspect of the present work was the generation of a mES cell line that

expresses a GFP reporter under the control of the Pax6 P0 promoter and upstream

lens ectoderm enhancer (EE). This mES cell line should facilitate our

understanding of the inductive mechanisms involved in lens progenitor cell

differentiation. For example, when Pax6-GFP reporter mES cells are transduced

with Pax6 or Six3, directed differentiation along the lens pathway appears to

commence as early as 3 days post treatment, when GFP reporter expression is

detected. In vivo, the mouse Pax6 ectoderm enhancer directs Pax6 expression as

early as E8.5 during lens placode specification and thereafter in the AEL, and it is

positively autoregulated by the Pax6 gene product. Hence, the early appearance of

GFP expression following introduction of Pax6 into Pax6-GFP reporter mES cells

is consistent with the known positive autoregulation of the Pax6 EE. In Pax6 or

Six3 transfected Pax6-GFP or G4 mES cells, differentiation ensues with expression

of cA-crystallin and of additional lens differentiation markers. Frequently, these

lens marker positive cells were noted to cluster together in aggregates in the

Fig. 5. Proximity of lens marker and Pax6-GFP or Six3-GFP expressing mES cells. (A–F) mES cell
cultures transduced with Pax6-GFP under the constitutive E1a promoter show close proximity but generally
non-overlapping expression of GFP with cA-crystallin (A–C) or Tdrd7 (D–F) at 21 days. (G–I) Similar results
were obtained for E1a driven Six3-GFP transduction and cA-crystallin expression. These results suggest
recruitment of undifferentiated mES cells to a lens fate by Pax6- or Six3-expressing cells. Scale bar: A–I
30 mm.

doi:10.1371/journal.pone.0115106.g005
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central portion of individual ES cell colonies. Ultimately, by 30 days post-

transduction, some aggregates coalesce to form lentoid bodies.

The lens marker genes expressed during differentiation in the in vitro ES cell

system are normally expressed in distinct spatial and temporal patterns during in

vivo lens development. Specifically, the developing lens involves a single

progenitor cell lineage with multiple states of differentiation. Therefore, the

significant degree of non-overlapping expression of lens markers in differentiating

ES cells may reflect the emergence of distinct lens cell phenotypes via normal

developmental regulatory mechanisms. Alternatively, the discordant expression of

the lens markers in differentiating cells in these cultures could reflect a high degree

of cellular and molecular heterogeneity due to variable micro-environmental cues,

nor are these two mutually exclusive. Both early markers (Cryaa, Foxe3/FOXE3,

CRYAA and CRYBB2) as well as late markers of lens cell development (cA-

crystallin, Tdrd7, Prox 1), are identified and described in mESC and hESC

cultures using immunolabeling while concurrently demonstrating up regulation

of Pax6 expression in both Pax6 and Six3 transduced ES cultures. These findings

further lend support to the recapitulation of physiologically relevant differentia-

tion pathways in vitro. It is important to note that the overall efficiency of lens

induction in these cultures appears to be less than that observed in the chemically

defined media protocol (27). This is not unexpected, because in the Pax6

transduction protocol described here, only a fraction of cells are transduced,

whereas in the chemically defined media protocol, the entire culture is uniformly

exposed to the requisite signaling molecules. Nonetheless, our observations

indicate that expression of Pax6 or Six3 in undifferentiated ES cells is sufficient to

direct a subset of the cells to differentiate towards a lens fate.

These findings hold relevance for two reasons. First, this system may allow the

study of lens differentiation mechanisms in vitro. Such knowledge could help

delineate the underlying genetic circuitry used in endogenous lens development

and also needed to generate lens cells from undifferentiated ES cells for future cell-

based therapies. Second, an in vitro model for lens development could allow study

of the pathological mechanisms that underlie congenital lens defects. For example,

recently Lachke et al. [37] found that mutations in the gene encoding the RNA

granule protein Tdrd7 cause cataracts and an associated glaucoma. The presence

of Tdrd7 granules in these cultures provides a potential system to further analyze

their composition and function. In addition, this system could allow functional

tests of lens associated candidate genes identified by bioinformatics tools such as

iSyTE [42].

Mechanistically, the idea that a single-gene manipulation can initiate the

development of a complex tissue is highly appealing and can be understood in the

context of scale free networks in which certain highly connected nodes function as

‘‘hubs’’ (41). In this case, key upstream regulatory genes such as Pax6 and Six3

may function as hubs and serve to initiate a series of distinct downstream

transcriptional events and cellular interactions that lead to the emergence of lens

cell types. Previous studies have shown that co-culture of primate and mouse ES

cells on PA6 stromal feeders can direct ES cell differentiation along the lens
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pathway, the latter in a Pax6-dependent process [25–29]. These results suggest an

important role for signaling interactions between feeder and ES cells. An

important role for signaling interactions is also indicated by the efficient

induction of lens cell fate in chemically defined ES cell induction protocols (27–

28).

By tracing the mES cells transduced with a lentiviral vector constitutively

expressing either Pax6 or Six3 along with GFP under a constitutive EF1a
promoter, we were able to track the fate and location of the Pax6 or Six3-

expressing cells relative to the lens marker expressing cells in these cultures.

Interestingly, we found that while ,1–5% of GFP expressing cells co-express lens

markers, the majority of lens-marker-expressing cells reside near Pax6-GFP

expressing cells. This observation is consistent with results from the aforemen-

tioned co-culture experiments, as Pax6 expressing cells appear able to recruit

nearby undifferentiated cells into the lens differentiation program. We therefore

suspect that individual Pax6 expressing cells recruit other cells to the lens pathway

via non-cell autonomous mechanisms, and that the expression of Pax6 suffices to

initiate this differentiation cascade. We also have investigated the use of FGFs

which supported formation of lentoids but did not appear significantly different

from Pax6 and Six3 transfected differentiating cultures that were not

supplemented with FGF. This may in part be due to paracrine production of FGF

in all cultures. This system thus provides the opportunity to further investigate the

gene regulatory mechanisms that underlie mammalian lens development.
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