2,198 research outputs found

    Global analysis of SNPs, proteins and protein-protein interactions: approaches for the prioritisation of candidate disease genes.

    Get PDF
    PhDUnderstanding the etiology of complex disease remains a challenge in biology. In recent years there has been an explosion in biological data, this study investigates machine learning and network analysis methods as tools to aid candidate disease gene prioritisation, specifically relating to hypertension and cardiovascular disease. This thesis comprises four sets of analyses: Firstly, non synonymous single nucleotide polymorphisms (nsSNPs) were analysed in terms of sequence and structure based properties using a classifier to provide a model for predicting deleterious nsSNPs. The degree of sequence conservation at the nsSNP position was found to be the single best attribute but other sequence and structural attributes in combination were also useful. Predictions for nsSNPs within Ensembl have been made publicly available. Secondly, predicting protein function for proteins with an absence of experimental data or lack of clear similarity to a sequence of known function was addressed. Protein domain attributes based on physicochemical and predicted structural characteristics of the sequence were used as input to classifiers for predicting membership of large and diverse protein superfamiles from the SCOP database. An enrichment method was investigated that involved adding domains to the training dataset that are currently absent from SCOP. This analysis resulted in improved classifier accuracy, optimised classifiers achieved 66.3% for single domain proteins and 55.6% when including domains from multi domain proteins. The domains from superfamilies with low sequence similarity, share global sequence properties enabling applications to be developed which compliment profile methods for detecting distant sequence relationships. Thirdly, a topological analysis of the human protein interactome was performed. The results were combined with functional annotation and sequence based properties to build models for predicting hypertension associated proteins. The study found that predicted hypertension related proteins are not generally associated with network hubs and do not exhibit high clustering coefficients. Despite this, they tend to be closer and better connected to other hypertension proteins on the interaction network than would be expected by chance. Classifiers that combined PPI network, amino acid sequence and functional properties produced a range of precision and recall scores according to the applied 3 weights. Finally, interactome properties of proteins implicated in cardiovascular disease and cancer were studied. The analysis quantified the influential (central) nature of each protein and defined characteristics of functional modules and pathways in which the disease proteins reside. Such proteins were found to be enriched 2 fold within proteins that are influential (p<0.05) in the interactome. Additionally, they cluster in large, complex, highly connected communities, acting as interfaces between multiple processes more often than expected. An approach to prioritising disease candidates based on this analysis was proposed. Each analyses can provide some new insights into the effort to identify novel disease related proteins for cardiovascular disease

    Evaluating a Remote Monitoring Program for Respiratory Diseases: Prospective Observational Study

    Get PDF
    BACKGROUND: Patients with chronic respiratory diseases and those in the postdischarge period following hospitalization because of COVID-19 are particularly vulnerable, and little is known about the changes in their symptoms and physiological parameters. Continuous remote monitoring of physiological parameters and symptom changes offers the potential for timely intervention, improved patient outcomes, and reduced health care costs. OBJECTIVE: This study investigated whether a real-time multimodal program using commercially available wearable technology, home-based Bluetooth-enabled spirometers, finger pulse oximeters, and smartphone apps is feasible and acceptable for patients with chronic respiratory diseases, as well as the value of low-burden, long-term passive data collection. METHODS: In a 3-arm prospective observational cohort feasibility study, we recruited 60 patients from the Royal Free Hospital and University College Hospital. These patients had been diagnosed with interstitial lung disease, chronic obstructive pulmonary disease, or post-COVID-19 condition (n=20 per group) and were followed for 180 days. This study used a comprehensive remote monitoring system designed to provide real-time and relevant data for both patients and clinicians. Data were collected using REDCap (Research Electronic Data Capture; Vanderbilt University) periodic surveys, Remote Assessment of Disease and Relapses-base active app questionnaires, wearables, finger pulse oximeters, smartphone apps, and Bluetooth home-based spirometry. The feasibility of remote monitoring was measured through adherence to the protocol, engagement during the follow-up period, retention rate, acceptability, and data integrity. RESULTS: Lowest-burden passive data collection methods, via wearables, demonstrated superior adherence, engagement, and retention compared with active data collection methods, with an average wearable use of 18.66 (SD 4.69) hours daily (77.8% of the day), 123.91 (SD 33.73) hours weekly (72.6% of the week), and 463.82 (SD 156.70) hours monthly (64.4% of the month). Highest-burden spirometry tasks and high-burden active app tasks had the lowest adherence, engagement, and retention, followed by low-burden questionnaires. Spirometry and active questionnaires had the lowest retention at 0.5 survival probability, indicating that they were the most burdensome. Adherence to and quality of home spirometry were analyzed; of the 7200 sessions requested, 4248 (59%) were performed. Of these, 90.3% (3836/4248) were of acceptable quality according to American Thoracic Society grading. Inclusion of protocol holidays improved retention measures. The technologies used were generally well received. CONCLUSIONS: Our findings provide evidence supporting the feasibility and acceptability of remote monitoring for capturing both subjective and objective data from various sources for respiratory diseases. The high engagement level observed with passively collected data suggests the potential of wearables for long-term, user-friendly remote monitoring in respiratory disease management. The unique piloting of certain features such as protocol holidays, alert notifications for missing data, and flexible support from the study team provides a reference for future studies in this field. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.2196/28873

    A survey on clinical natural language processing in the United Kingdom from 2007 to 2022

    Get PDF
    Much of the knowledge and information needed for enabling high-quality clinical research is stored in free-text format. Natural language processing (NLP) has been used to extract information from these sources at scale for several decades. This paper aims to present a comprehensive review of clinical NLP for the past 15 years in the UK to identify the community, depict its evolution, analyse methodologies and applications, and identify the main barriers. We collect a dataset of clinical NLP projects (n = 94; £ = 41.97 m) funded by UK funders or the European Union’s funding programmes. Additionally, we extract details on 9 funders, 137 organisations, 139 persons and 431 research papers. Networks are created from timestamped data interlinking all entities, and network analysis is subsequently applied to generate insights. 431 publications are identified as part of a literature review, of which 107 are eligible for final analysis. Results show, not surprisingly, clinical NLP in the UK has increased substantially in the last 15 years: the total budget in the period of 2019–2022 was 80 times that of 2007–2010. However, the effort is required to deepen areas such as disease (sub-)phenotyping and broaden application domains. There is also a need to improve links between academia and industry and enable deployments in real-world settings for the realisation of clinical NLP’s great potential in care delivery. The major barriers include research and development access to hospital data, lack of capable computational resources in the right places, the scarcity of labelled data and barriers to sharing of pretrained models

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Effects of antiplatelet therapy after stroke due to intracerebral haemorrhage (RESTART): a randomised, open-label trial

    Get PDF
    Background: Antiplatelet therapy reduces the risk of major vascular events for people with occlusive vascular disease, although it might increase the risk of intracranial haemorrhage. Patients surviving the commonest subtype of intracranial haemorrhage, intracerebral haemorrhage, are at risk of both haemorrhagic and occlusive vascular events, but whether antiplatelet therapy can be used safely is unclear. We aimed to estimate the relative and absolute effects of antiplatelet therapy on recurrent intracerebral haemorrhage and whether this risk might exceed any reduction of occlusive vascular events. Methods: The REstart or STop Antithrombotics Randomised Trial (RESTART) was a prospective, randomised, open-label, blinded endpoint, parallel-group trial at 122 hospitals in the UK. We recruited adults (≥18 years) who were taking antithrombotic (antiplatelet or anticoagulant) therapy for the prevention of occlusive vascular disease when they developed intracerebral haemorrhage, discontinued antithrombotic therapy, and survived for 24 h. Computerised randomisation incorporating minimisation allocated participants (1:1) to start or avoid antiplatelet therapy. We followed participants for the primary outcome (recurrent symptomatic intracerebral haemorrhage) for up to 5 years. We analysed data from all randomised participants using Cox proportional hazards regression, adjusted for minimisation covariates. This trial is registered with ISRCTN (number ISRCTN71907627). Findings: Between May 22, 2013, and May 31, 2018, 537 participants were recruited a median of 76 days (IQR 29–146) after intracerebral haemorrhage onset: 268 were assigned to start and 269 (one withdrew) to avoid antiplatelet therapy. Participants were followed for a median of 2·0 years (IQR [1·0– 3·0]; completeness 99·3%). 12 (4%) of 268 participants allocated to antiplatelet therapy had recurrence of intracerebral haemorrhage compared with 23 (9%) of 268 participants allocated to avoid antiplatelet therapy (adjusted hazard ratio 0·51 [95% CI 0·25–1·03]; p=0·060). 18 (7%) participants allocated to antiplatelet therapy experienced major haemorrhagic events compared with 25 (9%) participants allocated to avoid antiplatelet therapy (0·71 [0·39–1·30]; p=0·27), and 39 [15%] participants allocated to antiplatelet therapy had major occlusive vascular events compared with 38 [14%] allocated to avoid antiplatelet therapy (1·02 [0·65–1·60]; p=0·92). Interpretation: These results exclude all but a very modest increase in the risk of recurrent intracerebral haemorrhage with antiplatelet therapy for patients on antithrombotic therapy for the prevention of occlusive vascular disease when they developed intracerebral haemorrhage. The risk of recurrent intracerebral haemorrhage is probably too small to exceed the established benefits of antiplatelet therapy for secondary prevention

    Effects of antiplatelet therapy after stroke due to intracerebral haemorrhage (RESTART): a randomised, open-label trial

    Get PDF
    Background: Antiplatelet therapy reduces the risk of major vascular events for people with occlusive vascular disease, although it might increase the risk of intracranial haemorrhage. Patients surviving the commonest subtype of intracranial haemorrhage, intracerebral haemorrhage, are at risk of both haemorrhagic and occlusive vascular events, but whether antiplatelet therapy can be used safely is unclear. We aimed to estimate the relative and absolute effects of antiplatelet therapy on recurrent intracerebral haemorrhage and whether this risk might exceed any reduction of occlusive vascular events. Methods: The REstart or STop Antithrombotics Randomised Trial (RESTART) was a prospective, randomised, open-label, blinded endpoint, parallel-group trial at 122 hospitals in the UK. We recruited adults (≥18 years) who were taking antithrombotic (antiplatelet or anticoagulant) therapy for the prevention of occlusive vascular disease when they developed intracerebral haemorrhage, discontinued antithrombotic therapy, and survived for 24 h. Computerised randomisation incorporating minimisation allocated participants (1:1) to start or avoid antiplatelet therapy. We followed participants for the primary outcome (recurrent symptomatic intracerebral haemorrhage) for up to 5 years. We analysed data from all randomised participants using Cox proportional hazards regression, adjusted for minimisation covariates. This trial is registered with ISRCTN (number ISRCTN71907627). Findings: Between May 22, 2013, and May 31, 2018, 537 participants were recruited a median of 76 days (IQR 29–146) after intracerebral haemorrhage onset: 268 were assigned to start and 269 (one withdrew) to avoid antiplatelet therapy. Participants were followed for a median of 2·0 years (IQR [1·0– 3·0]; completeness 99·3%). 12 (4%) of 268 participants allocated to antiplatelet therapy had recurrence of intracerebral haemorrhage compared with 23 (9%) of 268 participants allocated to avoid antiplatelet therapy (adjusted hazard ratio 0·51 [95% CI 0·25–1·03]; p=0·060). 18 (7%) participants allocated to antiplatelet therapy experienced major haemorrhagic events compared with 25 (9%) participants allocated to avoid antiplatelet therapy (0·71 [0·39–1·30]; p=0·27), and 39 [15%] participants allocated to antiplatelet therapy had major occlusive vascular events compared with 38 [14%] allocated to avoid antiplatelet therapy (1·02 [0·65–1·60]; p=0·92). Interpretation: These results exclude all but a very modest increase in the risk of recurrent intracerebral haemorrhage with antiplatelet therapy for patients on antithrombotic therapy for the prevention of occlusive vascular disease when they developed intracerebral haemorrhage. The risk of recurrent intracerebral haemorrhage is probably too small to exceed the established benefits of antiplatelet therapy for secondary prevention

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore