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A survey on clinical natural language processing in the United
Kingdom from 2007 to 2022
Honghan Wu 1✉, Minhong Wang1, Jinge Wu1,2, Farah Francis 2, Yun-Hsuan Chang1, Alex Shavick3, Hang Dong2,4,
Michael T. C. Poon2, Natalie Fitzpatrick1, Adam P. Levine 3, Luke T. Slater5, Alex Handy1,6, Andreas Karwath5, Georgios V. Gkoutos 5,
Claude Chelala7, Anoop Dinesh Shah 1, Robert Stewart 8,9, Nigel Collier10, Beatrice Alex11, William Whiteley 2, Cathie Sudlow2,
Angus Roberts 12 and Richard J. B. Dobson 1,12

Much of the knowledge and information needed for enabling high-quality clinical research is stored in free-text format. Natural
language processing (NLP) has been used to extract information from these sources at scale for several decades. This paper aims to
present a comprehensive review of clinical NLP for the past 15 years in the UK to identify the community, depict its evolution,
analyse methodologies and applications, and identify the main barriers. We collect a dataset of clinical NLP projects (n= 94;
£= 41.97 m) funded by UK funders or the European Union’s funding programmes. Additionally, we extract details on 9 funders, 137
organisations, 139 persons and 431 research papers. Networks are created from timestamped data interlinking all entities, and
network analysis is subsequently applied to generate insights. 431 publications are identified as part of a literature review, of which
107 are eligible for final analysis. Results show, not surprisingly, clinical NLP in the UK has increased substantially in the last 15 years:
the total budget in the period of 2019–2022 was 80 times that of 2007–2010. However, the effort is required to deepen areas such
as disease (sub-)phenotyping and broaden application domains. There is also a need to improve links between academia and
industry and enable deployments in real-world settings for the realisation of clinical NLP’s great potential in care delivery. The major
barriers include research and development access to hospital data, lack of capable computational resources in the right places, the
scarcity of labelled data and barriers to sharing of pretrained models.
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INTRODUCTION
Free-text components of Electronic Health Records (EHRs) contain
much of the valuable information that is essential to facilitate
tailored care and personalised treatments for patients1–3. A lot of
this information is either unlikely to be available or is more
comprehensive than the structured component of EHRs only4,5.
Data such as signs or symptoms of disease, adverse drug
reactions, lifestyle (e.g. smoking, alcohol consumption and living
arrangements), family medical history, or key information describ-
ing disease subtypes are recorded with greater frequency and
depth in free-text data6–8. To interrogate free texts and unlock
deep phenotypic data for research and care, Natural Language
Processing (NLP) approaches2–4,6–8 have been adopted to auto-
mate the extraction of such information at scale. Like any NLP task,
clinical NLP needs to tackle the challenges of devising computer
programmes for understanding human spoken or written
languages, which constitute some of the most challenging
problems faced by artificial intelligence (AI). For those implement-
ing or using clinical NLP, there are additional complications and
challenges, which, on the flip side, are new opportunities for
research and development.
Clinical NLP often encounters challenges with insufficient data

for both supervised and unsupervised machine learning (ML). This
‘low-resource’ setting can be considered in three contexts. First,

labelled data for supervised models are scarce and ‘expensive’;
these are difficult to scale. Annotators require medical expertise to
evaluate clinical information to generate ground truth. Disagree-
ments are prevalent and long-standing among clinical experts9–11.
The annotation process often requires multiple clinician annota-
tors with senior clinicians, who often have other clinical
commitments, adjudicating disagreements. Second, clinical NLP
tasks are very likely to deal with highly imbalanced data, which is
widely perceived as challenging for ML algorithms12. For example,
an NLP study examining radiology reports of brain scans13

reported the most frequent phenotype as Ischaemic Stroke
(n= 2706 or 11.6%) and the least frequent as Meningioma Tumour
(n= 10 or 0.4%). The third ‘low resource’ is a computational
resource. NLP systems often require capable computational
environments with software such as Python, libraries, or open
source repositories and hardware, including graphic processing
units. It is technically challenging to set up these computational
requirements in trusted research environments (TREs), such as
those within hospital networks, where clinical data is securely
accessible.
Clinical NLP is also knowledge-intensive—the need to incorpo-

rate formalised knowledge that computers can understand.
Domain knowledge has been shown to be important for
understanding biomedical texts, such as in interpreting linguistic
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structures14. Medical text report classifications were also shown to
benefit significantly from expert knowledge15. In terms of
knowledge-based computation, a common feature of clinical
NLP applications is the need to perform patient-level inferences, in
addition to standard tasks, such as identification of named entities
or document classification; an example of this is the inference of
subtypes of stroke based on named entities retrieved from text
reports8.
The knowledge, commonly represented as ontologies, required

for clinical decision-making falls at the intersection of many
biomedical sciences, including epidemiology, genetics, pharma-
cology and diagnostics. The size and breadth of background
knowledge needed to make inferences are great. However, clinical
NLP benefits from the availability of massive knowledge resources
that support biomedical science. Medical vocabularies such as
SNOMED CT16 and ICD-1017 provide classifications of clinical
concepts that include taxonomy and vocabulary. In addition to
these features, biomedical ontologies provide a formal semantics
for a wide range of biomedical concepts and their inter-
relations18,19. Despite the development of these knowledge
resources, clinical knowledge at the patient level is largely not
represented in a computer-usable form; for example, no existing
ontologies can inform an AI system that, while possible20, it is
probably inconsistent to diagnose a patient with both types 1 and
type 2 diabetes. Developing formal knowledge resources is a
current challenge for enabling and improving clinical decision-
making applications.
Lastly, access to patient-level free-text clinical data is controlled

by information governance (IG) regulations21, such as the UK’s
legal framework22, including the NHS Act 2006, the Health and
Social Care Act 2012, the Data Protection Act and the Human
Rights Act. These regulations are usually complex. The interpreta-
tion and application are varied, often resulting in defensive
practices. For example, while it is widely acknowledged that it is
difficult to comprehensively anonymize free-text data, there is
much less consensus on how to do text anonymization at scale,
what are the proper evaluation procedures, what level of
performance is good enough, and how the anonymization fits
within a framework that would ensure confidentiality according to
the regulations. As a result, data access to patient data is one of
the biggest hurdles for clinical NLP. There has been progress in
developing in-house NLP within large NHS organisations such as
hospitals, but the IG challenges are greater for using data across
NHS organizations.
These challenges (or opportunities) faced by clinical NLP are too

great to be tackled by individuals working alone or in small
research groups. Cross-organisation collaboration is key to
addressing technical challenges, such as sharing data or models,
yet the NLP community remains fragmented. Formalising patient-
level inference knowledge at scale is only feasible as part of a
community effort. Furthermore, national coordination is necessary
to create reproducible streamlined procedures for facilitating
access to free-text clinical data.
There is a large body of literature reviewing clinical NLP,

providing useful summaries of the developments of technologies
and applications, for example, on application domains23,24, on
particular clinical questions25,26, on particular modalities27–29, or
on methodologies30–32. However, healthcare services and their
regulations (e.g., the above-mentioned IG policies) differ from
country to country. Clinical NLP would particularly benefit from
close collaborations and coordination initiatives at a national level.
None of the existing reviews provides a comprehensive overview
(including who and what, the developments and the gaps) for
facilitating such national-level collaborations.
This article aims to facilitate an informed national effort to

tackle grand clinical NLP challenges, through a network-based,
timestamped and multifaceted review and analysis of the
development of clinical NLP in the UK over the past 15 years.

Specifically, the main objectives are to gain an understanding of
the following key aspects:

● Who: To identify the key stakeholders, including organisations
(funders, universities, NHS Trusts and companies) and persons
(researchers, students and developers) and how they are
connected to each other to form the community.

● What: To survey the applications, clinical questions, technol-
ogies and datasets the community has been working on.

● Where: To uncover how the community has grown and how
technologies and application domains have evolved over the
years; in particular, to assess how the technologies have been
used in real-world settings and how the technology maturity
levels have changed.

● Gaps: Importantly, we identify the gaps that require invest-
ment from funders, the barriers to unlocking the potential of
clinical NLP and the future research directions.

The scope of this study is depicted in Fig. 1 and comprises two
parts. The first is to conduct a community analysis of UK clinical
NLP in the last 15 years. This is to reveal the key stakeholders, their
connections and developments. The second is to conduct a
literature review on the research outputs of the community to
understand the technologies used, key application domains and
their trends.

RESULTS
Clinical NLP community analysis results
For overall community developments, Fig. 2 illustrates overall
graph representations of the clinical NLP landscape at three-time
points (five years apart): 2012, 2017 and 2022. It shows a steady
trend of rapid and significant developments in the community in
the last 10 years. By 2012, there were only two funded projects
involving four organisations with a total of £0.37 million funding.
Five years later, by 2017, there were 27 projects and 50
organisations with a total funding of £10.35 million. The latest
data collected in this study (by February 2022) shows there were
94 projects, 137 organisations and a total funding of £41.97
million. Interactive visualisation of the graph is available at https://
observablehq.com/@626e582587f7e383/uk-clinical-nlp-
landscaping-analysis#chart.
To identify the key stakeholders in the community, we ranked

the nodes in the graph by their relative centrality scores based on
the Eigenvector centrality measurement. Table 1 shows the three
ranked lists of organisations stratified by type. The first part of the
table (Table 1a) lists the top 10 most influential organisations of all

Fig. 1 The scope of this study is composed of two main parts. a A
UK community survey (the lower oval); and b a literature review of
the community’s research outputs (the upper oval). *NHS—National
Health Service in the UK; RL/ML/LLM—NLP technologies of rule-based,
machine learning and large language models.
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types; the second part (Table 1b) lists the top NHS organisations,
and Table 1c lists the top 5 industry organisations. The top 10
most influential organisations are all universities. The combined
influence (=24.62) of the top 5 universities is more than 3.7 times
the sum of the influence of all NHS Trusts in the community and
more than 4 times that of the top 5 industry institutions.
Most NHS and industry organisations have a relative centrality

score larger than one (i.e., higher than the median centrality
score), meaning they are involved in relatively highly influential
projects.
For individuals, Fig. 3 illustrates the histogram of absolute

eigenvector scores of all persons in the community. It shows a
likely long-trail distribution.
To reflect on technology take-ups and maturity, we did an

analysis of the involvement of industry partners and deployment
within health services, both of which are key indicators for the
maturity of a technology.
Figure 4 shows the budget trends for all projects, projects that

involved the NHS and projects that involved industry in the last 15
years grouped by 3-year periods. It shows a clear pattern whereby

Fig. 2 Snapshots (force-directed visualisations) of the community from 2012 to 2022. The graphs contain four types of entities: projects,
persons, organisations and funders. Each graph is constructed using data from projects with a start date earlier than or in the given year.
Graph data is cumulative, meaning a later year’s data is a superset of its previous years. The size of organisation nodes indicates the number of
total amounts in pound sterling they received in funding.

Table 1. Different types of organisations are ranked by eigenvector
centrality scores relative to the median value of those of all
organisations.

Organisation name RCS Amount (£m)

Top ten organisations of all types

University of Manchester 6.53 6.14

University College London 5.23 3.54

University of Cambridge 4.53 3.76

University of Edinburgh 4.35 6.31

Imperial College London 3.98 1.55

King’s College London 3.97 3.56

University of Oxford 3.3 0.72

University of Liverpool 3.27 2.61

Lancaster University 3.25 1.19

University of York 2.11 1.45

Top NHS organisations

Salford Royal NHS Foundation Trust 1.53 1.28

NHS Greater Glasgow and Clyde 1.05 0.05

University College London Hospitals NHS
Foundation Trust

1.03 0.64

Berkshire Healthcare NHS Foundation Trust 1.03 0.97

Nottinghamshire Healthcare NHS
Foundation Trust

1.03 0.37

South London and Maudsley (SLAM) NHS
Foundation Trust

0.87 0.31

Top industry organisations

Abtrace Limited 1.58 2.19

FACTMATA LIMITED 1.11 0.06

MENDELIAN LTD 1.11 0.10

Mantrah Limited 1.06 0.14

Swifter Limited 1.06 0.13

RCS relative centrality score.

Fig. 3 Histogram of person nodes Eigenvector centrality scores.
The x-axis is the eigenvector centrality score and the y-axis (log
scale) is the number of people with certain scores.
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the funding for clinical NLP in all three categories has increased
significantly. It is particularly encouraging to see NHS organisa-
tions’ involvement in this area has markedly increased in the last
three years. Industry involvement has increased more than 27
times from the 2016-2019 period to the 2019–2022 period.
To understand the interactions between groups in the

community, it is important to know: (1) what the key subgroups
are; and (2) how they are connected with each other.
From the 2022 snapshot in Fig. 2, we observe that there are four

natural clusters in the graph. The middle of the graph is the
biggest cluster, containing research projects supported by UK
research councils such as EPSC, MRC, BBSRC and ESRC. The top left
corner forms the second cluster, which is NIHR-funded projects.
The NIHR funds health and social care research, which is supposed
to be more translational than research in the main cluster. The
third cluster is on the right and contains projects funded by
Innovate UK. Such projects are sometimes led by industry and are
intended to produce products ready for use by end customers, i.e.,
health service providers such as the NHS. The top right is the
cluster of projects funded by EU Horizon 2020 (H2020) pro-
grammes. Overall, the four clusters are connected weekly with
each other.
To quantify the strength of connections between subgroups

within the community, we conducted a k-connectivity community
analysis. Table 2 shows the results, where a sub-community is
represented by a funder composed of its funded projects and

associated persons and organisations. The community is con-
nected. Therefore, when k is 1, the whole graph constitutes one
and only one connected component. When k= 2, Innovative UK
and H2020 sub-communities are separated from the main
component. When k= 3, the whole subgraph of Innovative UK
disappears, meaning the connectivity within its own cluster is also
weak. The same applies to H2020 projects.
For the main cluster where all other funders reside, the

connectivity is not strong: BBSRC disconnected at k= 5, ESRC
disconnected at 6 and NIHR disconnected at 9. EPSRC and MRC
form the core, which keeps inter-connected until k reaches 17.
It is worth mentioning that as of 1st January 2020, the graph of

the whole community was composed of three separate compo-
nents of H2020, Innovative UK and other funders. This means the
community was formed as an interlinked graph for just a little
more than two years.
For depicting the development of training next-generation

clinical NLP Leaders, we extracted studentship projects (i.e.,
funded via doctoral training programmes) to understand the
trends of clinical NLP-related PhD projects in recent years. Figure 5
shows three snapshots of funded studentship projects in 2016,
2017 and 2021, respectively. The first project was funded by the
MRC, led by Edinburgh and started in 2016. By October 2021,
there were a total of 16 funded studentship projects identified,
out of which 10 were funded by EPSRC and 5 by MRC.

Literature review results on publications
A total of 431 publications were extracted from the 94 projects
identified in the community analysis above. A manual screening
process was conducted using study criteria detailed in the method
section, which identified 107 publications for review.
Table 3 lists the key characteristics of the 107 studies in the last

15 years, including 16 published during 2007–201233–48; 31 in
2012–201749–79; and 60 published in 2017–202280–139. More than
45% (n= 49) of these studies were international (involving at least
one collaborator from a country other than the UK). There were a
total of 23 collaborating countries or regions, with Japan (n= 12),
the USA (n= 12) and Sweden (n= 11) being the top three most
frequent collaborating countries.
Categorised by NLP tasks,

● 31.8% (n= 34) performed named entity recognition including
extractions of phenotypic information42,55,65,66,85,87,104, diseases
50,56,84,89,133, drug entities53,95,115, proteins or genes39,68,107 and
general concept extractions52,74,76,81,82,88,90,92,96,103,109,113,122,124,131
,137.

● 27.1% (n= 29) performed text/document classification, includ-
ing risk assessment classifications34,48,49,91,97,99, literature

Fig. 4 Trends in the last 15 years on budgets of all clinical NLP projects, those involving NHS and those involving industry organisations.
Each tick on the x-axis is a 3-year period. The y-axis shows the total budget. The sums of NHS involved and industry involved project budgets
are plotted alongside the budget of all projects across five 3-year periods.

Table 2. K-connectivity analysis results on the network. A funder
name represents the sub-community composed of the funder, its
funded projects and associated persons and organisations.

k values Component 1 Component 2 Component 3

1 〈WHOLE GRAPH〉

2 NIHR; BBSRC; EPSRC;
MRC; ESRC

Innovate UK H2020

3–4 NIHR; BBSRC; EPSRC;
MRC; ESRC

5 NIHR; EPSRC; MRC; ESRC

6–8 EPSRC; NIHR; MRC

9–16 EPSRC; MRC

NIHR National Institute for Health Research, BBSRC Biotechnology and
Biological Sciences Research Council, EPSRC Engineering and Physical
Sciences Research Council, MRC Medical Research Council, ESRC Economic
and Social Research Council.
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review57,114,117,119,120, drug-related58,100,116,118, randomised
clinical trials127–129 and generic classifications (such as classify-
ing or clustering documents)51,54,60,75,79,80,105,106,112,135,139.

● 16.8% (n= 18) performed relation extraction including event
extractions35,37,59,71, adverse drug reactions64,67,69 and generic
information extractions36,38,40,61,62,70,108,110,121,125,136.

● 13.1% (n= 14) did Information retrieval including retrieval from
EHR83,93,94,98,101,102,134,140, literature data47,111 and other types
of data43–45,72,138.

● Other types of tasks performed included entity normalisa-
tions77,78,126, temporal expressions86,93,134 and natural language
generation63.

Contextual mentions of phenotypes and diseases are particu-
larly essential in clinical applications. Identifying positive and
negated mentions such as the patient has/has not got fever is
among the most studied contextual named entity
recognitions72,81,98.
In terms of health categories, mental health was the most

widely studied area84,86–103,132–134. It was followed by treatment
53,58,78,79,108,115,116,118,123, among which drug-related (mostly
adverse drug reactions) studies53,58,115,118 were most common.
Oncology 33,34,48,49,55,75,117 and cardiovascular diseases62,65,66,83

were the next two most frequently studied areas following
treatments. Other disease areas included infectious42,43,82,96,133,135,
respiratory56,82,96,133,135 and autoimmune138 diseases. In particular,
there were four studies on COVID-1982,96,133,135. The rest were
studies that belong to the ‘general applicability’ category, mean-
ing they were tools or models not designed for specific health
categories or diseases. They have general utilities for particular
scenarios that might be applicable to a wide range of clinical use
cases50–52,54,57,59–61,63,74,77,81,85,104–106,109–114,119–122,124,125,131,136,
137.
Of the 107 reviewed papers, 21 (19.6%) of them provided open

access to their repositories, making them usable tools/software for
the community. As for utilities in real clinical settings, only 5.6%
(n= 6) studies were deployed or further developed on systems
deployed in NHS environments81–85,140, of which81,140 have been
deployed as generic information retrieval or extraction platforms
on near real-time EHRs of respective NHS Trusts. Compared to
other work, these deployed tools are all concept-linking tools for
identifying a broad range of biomedical concepts using large
terminologies, including SNOMED CT and UMLS. This makes them

suitable for creating a generic platform that can support a wide
range of disease areas and application domains.
We conducted further analysis to understand technical objec-

tives vs. NLP tasks. To investigate the clinical application
categories, we adapted the classification system from28 and made
slight changes to classify the studies into the following five
technical objectives:

● Disease information and classification. This is to use
NLP for classifying a disease occurrence or extracting
information about a disease with no focus on the overall
clinical application. Studies in this category
include34–40,45–49,56,58–62,65–73,76–80,100,103,112,115–118,121,122,124,
128–130,134,135,139.

● Language discovery and knowledge. This category studies how
ontologies and lexicons could be combined with other NLP
methods to represent knowledge that can support clinicians.
Studies include33,41,50–52,55,63,74,75,81,85,86,104–108,110,114,119,131,132.

● Diagnostic surveillance. This is to use NLP for extracting disease
information for the patient or disease surveillance64,82–84,87–
93,99,102,125,126,133,136,138.

● Cohort building for epidemiological studies. The objective of this
category is to create cohorts for research purposes or support
the derivation or analysis of the outcomes of epidemiological
analysis. Studies belonging to this category include57,
94–98,101,111,113,120.

● Technical NLP. Other studies include those mainly focused on
the technical aspects of NLP, i.e., developing or applying NLP
technologies for improving the understanding of clinical free-
text. Nine studies belong to this category42–44,53,54,109,123,
127,137.

Advances in the above three technical objectives in particular
(Disease information and classification, Diagnostic Surveillance and
Cohort Building for Epidemiological Studies) offer a great opportunity
for health systems to harness data from unstructured EHRs for better
care. In addition, clinical NLP has great potential in (semi-)automated
clinical coding for timely and more accurate auditing, surveillance
and public health policing141. However, at the writing of this review,
developments of automated coding are still in their infancy in the UK.
Figure 6 illustrates a scatter plot of the NLP tasks against the

technical objectives. It shows how different NLP technologies have
been adopted to address different clinical questions. The largest
combination is Text Classification with Disease information &

Fig. 5 The development of studentship projects in clinical NLP from 2016 to 2021. The three figures (from left to right) show the networks
of studentship projects and their associated entities (funders, organisations and persons) for 2016, 2017 and 2021 respectively. The 2021 entire
network is too big to be shown fully using the same scale. Therefore, a low-resolution overview is shown at the top right and a snapshot of it
is displayed using the same scale as other years.
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Classification containing 16 studies34,48,49,58,60,79,80,100,112,116–118,
128,129,135,139. Named Entity Recognition has been widely used in
different clinical applications: 10 studies of Disease information &
Classification39,56,65,66,68,76,103,115,122,124, 9 studies of Language
discovery & knowledge50,52,55,74,81,85,104,107,131 and 8 of Diagnostic
surveillance82,84,87–90,92,133. In particular, there were some areas
(represented by small circles in the figure) that were clearly
understudied, for example, Text Classification for Diagnostic
surveillance91,99, Entity Normalisation for Diagnostic surveillance126

and Natural Language Generation in any application domains63.
In terms of NLP technologies and the trend, the pie chart in Fig.

7 summarises the different types of clinical NLP algorithms
adopted by the selected 107 studies. When there are multiple
algorithm categories, we use the main model or best-performing
model’s algorithm type.
ML-based denotes those tools using ML algorithms (excluding

those using deep neural network methods). There were 48.1% of
studies using ML-based methods, including Support Vector
Machines34,45,49,55,80,93,104,127–129, Bayesian methods33,34,48,58,72,97,

Conditional Random Fields33,54,56, Random Forest72,93,119, Logistic
Regression72,93,97, Artificial Neural Networks104, Decision Trees72

and others43,57,78,83–85,113,117,138.
Rule-based describes 18.9% of the studies using manually-

created rules for classifications or extractions37,38,44,53,74,86,94,
96,98,99,101–103,105,107,111,115,123,134,135.
DL-based denotes those using deep learning methods, account-

ing for 16.0% of the studies, including convolutional neural
networks75,77,79,109,110,121,130, recurrent neural networks76,77,116,121,
122,124, long short-term memory76,116,121,122,124 and transfor
mers112,116.
Others are those studies where the algorithms were not clearly

specified.
The bar chart in the figure shows the development trends of

different NLP algorithms used in the community. Traditional ML-
based methods peaked around 2015–2016, with DL-based methods
becoming increasingly popular thereafter. Rule-based methods
started decreasing in 2011 and remained at low-level usage when
ML-based methods were popular. Interestingly, they started to
increase again in 2018 by both absolute number and percentage.
Domain knowledge utilisation is an essential component in many

clinical NLP applications. To understand knowledge technologies,
we extracted data from the selected studies to analyse how
domain-specific knowledge was represented and utilised for
facilitating clinical NLP tasks. We defined domain knowledge in a
broad sense in this analysis, including both domain-specific
ontologies or terminologies (customised dictionaries), distributed
representations learned from external corpora (such as dense
vector representations of word semantics) and pretrained large
language models (e.g., BERT model and its variants). Figure 8 shows
the summary of adopted knowledge techniques.

● Ontologies: Clinical domain involves a wide range of domain-
specific ontologies, from clinical terminologies to biological
ontologies to literature classification systems. Overall, 55.9% of
studies utilised ontologies, amongst which we identified the
five most commonly used ontologies: Unified Medical
Language System was used by 16.8% (n= 18) stu-
dies36,56,61,64–66,69,70,81,83–85,89,106,113,115,130,139; SNOMED CT
had 6.5% (n= 7) users65,66,78,82,87,115,124; MeSH was used by
5.6% (n= 6) studies61,67,104,111,115,139; ChEBI was used by 4.7%
(n= 5)56,62,104,113,115; UniProt 2.8% (n= 3) was used by studies

Table 3. Key characteristics of the included studies (n= 107).

Study characteristics n (%)

Publication year

2007–2012 16 (15.0)

2012–2017 31 (29.0)

2017–2022 60 (56.1)

Country/region of collaboration

Japan 12 (11.2)

United States of America 12 (11.2)

Sweden 11 (10.3)

China 8 (7.5)

Australia 5 (4.7)

Italy 3 (2.8)

Others 22 (20.6)

Natural language processing tasks

Named entity recognition 34 (31.8)

Text classification 29 (27.1)

Relation extraction 18 (16.8)

Information retrieval 14 (13.1)

Entity normalisation 3 (2.8)

Temporal expressions 3 (2.8)

Natural language generation 1 (0.9)

Other information extraction 6 (5.6)

Health category

Mental health 23 (21.5)

Treatments 10 (9.3)

Oncology 7 (6.5)

Cardiovascular 4 (3.7)

Infectious 6 (5.6)

Respiratory 5 (4.7)

Autoimmune 1 (0.9)

COVID-19a 4 (3.7)

General applicability 60 (56.1)

Deployment in health services

No 101 (94.4)

Deployed in NHS env 6 (5.6)

aThe COVID-19 category was added in addition to the categories defined at
https://www.cdisc.org/standards/therapeutic-areas/disease-area.

Fig. 6 NLP tasks versus technical objectives. The x-axis is the
categories of NLP tasks and the y-axis is the technical objectives. The
size of the circles denotes the number of publications.
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(n= 3)56,69,113.
● Pretrained embeddings: Techniques such as word2vec142 aim

to learn dense vector representations (called embeddings) for
words or larger constructs (like phrases) from large external
corpora, which capture ‘transferable’ (domain) language
semantics for facilitating new tasks. The most used embed-
ding model from the 107 studies was word2vec76,79,121,122,136.
The second most popular model was FastText79,121,122,136. One
study136 used word2vec, FastText, ElMo, Glove and Flair.

● Customised dictionary: Ten studies used customised dictionaries,
including cancer studies55,75, two drug studies53,58, two mental
health studies88,134, a multilingual study 51 and others105,114,119.

● ML-BERT: Large language models like BERT or their techniques
were used by four studies, including a study for identifying
cognitive impairments in schizophrenia100, event extractions112,
a social media corpus study125 and a pre-trained biomedical
entity representation 137.

● Others: There are studies which adopted hybrid methods,
including those using bag-of-words representations34, utilising
lexical structures41, using biological process subontology of the

gene ontology (GO)45, using multiple methods77 including
ontologies (SNOMED CT and SIDER) and word2vec, combing
UMLS and customised dictionary50 and with unspecified
methods63.

Table 4 summarises the types of datasets used by the studies.
The majority of them (54.2%; n= 58) used literature corpora33–
40,42–57,59,60,66–76,80,104–107,109,111–115,117,119–121,127–131,139. Eleven
(10.3%) used social media data58,64,77–79,89,125,126,135,136,138.

Fig. 7 NLP algorithm type breakdown and their development trends over the last 15 years. The main bar chart shows the changes of
different NLP algorithms in the last 15 years. The pie chart at the top left corner depicts the overall breakdown of algorithms of all research
work analysed.

Fig. 8 Knowledge representation and distributed representations. The pie chart at the left shows the breakdown of representation
techniques. For ontologies, the bar chart on the right depicts the top five frequently used ontologies in clinical NLP applications.

Table 4. Dataset sources of studies.

Sources of data #Studies (%)

Literature 58 (54.2%)

EHR 31 (29.0%)

Social media 11 (10.3%)

Other 7 (6.5%)
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In total, 31 (28.97%) studies used real-world EHR data. Amongst
them (see Table 5), 21 (67.74%) used South London and Maudsley
NHS Foundation Trust mental health Hospital (SLaM) EHR data
(CRIS)81,84–88,90–100,103,132–134. There were only 4 UK EHRs utilised
by the studies. Apart from SLaM, they were from King’s College
Hospital (used by 81–83), Oxford Health NHS Foundation Trust
(OHFT) (used by101) and Camden & Islington Trust (used by102).
None of the UK-based EHRs was openly accessible but were
described as being available to collaborators. All three open
accessible EHRs were from the US: i2b2 (Informatics for Integrating
Biology & the Bedside) (used by63,65); n2c2 https://
portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/ (used by116,118);
and MIMIC-III143 (used by81,116,118. There was one EHR from
China—Jinhua People’s Hospital (used by63). The largest EHR
dataset cited for NLP implementation was CRIS at SLaM, of which
reported sizes were 23.3m documents and >400k people. The
second largest was OHFT (31,391 people).

DISCUSSION
We conducted a detailed study on clinical NLP developments in
the UK for the last 15 years since 2007. A network analysis was
conducted on the community dataset, including funders, projects,
people, and organisations. A further literature review was carried
out to analyse publications from the community. Results from the
two analyses revealed multifaceted insights into the evolution of
the UK NLP community, and related technical research and
developments.
In terms of community developments and connections, clearly,

clinical NLP has developed rapidly in the UK. The visualisations of
different timestamped snapshots (Fig. 2 shows the community to
be steadily expanding over the last 10 years. Analysis of
community stakeholders has revealed a consistent power-law
distribution of their influences across all types of entities (i.e.,
funders, organisations, persons and projects). This means that
there are ‘key players’ in all types of entities. As for funders, MRC
and EPSRC play critical roles. Their funded projects form the core
of the community.
For organisations, the dominant influence of universities

indicates clinical NLP is still a research-dominated area in the
UK. Meanwhile, NHS and industrial organisations have gained
considerable influence in the community (see Table 1). These are
promising signs that NLP technologies are starting to be taken up
by industry and healthcare service providers. Such signs are
further confirmed by the analysis of the trends of funding sources
that involve these partners. Particularly, industry involvement in
projects has increased from less than 1/15 from 2016 to 2019 to

around 1/1.5 from 2019 onwards, indicating possible increased
technology maturity, or recognition of the potential generally, of
clinical NLP in the last 3 years.
Another positive sign observed is the continuously increasing

investment in training the next generation of NLP researchers.
Since 2016, studentship projects have increased from just one to
16 across 14 institutions. Figure 5 reveals a pattern of continuously
increasing studentships overall across different organisations,
which is encouraging.
However, links between sub-communities appear to be weak.

For example, projects funded by Innovative UK are very weakly
linked with other funders and their funded projects/people—only
two edges, to be specific. This means the connections between
academia and industry sub-communities are fragile. The NIHR and
its funded projects, which are supposed to be more translational,
also form their own cluster with a similar weak connection to
those funded by MRC and EPSRC. Such weak connections might
indicate that the translation from research to outputs that directly
benefit health services is also weak and not streamlined. These
sub-communities mostly work alone. This might indicate barriers
to the translation of active research into mature technologies to
support business or improve health services.
Our literature review of the 107 selected publications has

revealed a strong growth pattern that echoes the expansion of the
community from the above network analysis. Specifically, research
publications doubled every 5 years in the last 15 years. The
community has collaborated with more than 20 countries
internationally.
On the aspect of applications and translations, while the studies

as a whole have covered a wide range of diseases, the majority
were focused on mental health or treatments. The main reason
might be that there is a lack of good coverage of coded data in
areas such as mental health. For mental health, many symptoms
and phenotypes are usually not routinely coded as structured
data: for example, the quantification or qualification of cognitive
impairment. For treatments (mainly drug-related studies), adverse
reactions or events were the main information to be extracted,
which are also rarely routinely coded in a structured format. This
means current research mainly utilises NLP for uncovering the
under-coded information when this is needed across the EHR
database as a whole (i.e., in samples too large for manual
annotation or checking, and in clinical services where the
imposition of structured instruments for routine information-
gathering is not feasible or acceptable). The potential of free-text
data for subtyping diseases (e.g., revealing the nuance of
phenotypic representations) seems less exploited at the current
time. This is an area where clinical NLP could maximise its utilities
for facilitating personalised medicine as and when in-depth
information is demonstrated to have prognostic value.
Regarding technical objectives, the three categories of language

discovery & knowledge, disease information & classification and
technical NLP combined constitute almost 74% of the studies. This
means that only 26% of research-targeted problems are classified
as diagnostic surveillance and cohort-epid, both of which are more
clinically actionable. This observation indicates that the current
studies are less translational in clinical practice, which reflects the
findings from the community analysis. This is also reflected by the
very low number (<6%) of deployed clinical NLP systems within
NHS environments.
Such a low level of development might reflect the big

challenges faced by translation to health systems. Among others,
deployments of NLP models on production EHR systems do
encounter additional technical challenges. For example, compared
to research-oriented NLP, translational model developments
would mean moving from relatively small-volume evaluation
datasets to applications at scale across very large and diverse
corpora, making high generalisability an essential requirement. In
addition, these models might encounter a near-inevitable drop-off

Table 5. EHR datasets used by studies.

Dataset #Studies Region Open access

SLaM - CRIS 21 UK

King’s College Hospital 3 UK

n2c2 2 US x

i2b2 2 US x

Jinhua 1 CN

MIMIC-III 3 US x

OHFT - Oxford 1 UK

Camden and Islington 1 UK

SLaM South London and Maudsley Hospital, OHFT Oxford Health NHS
Foundation Trust, Jinghua Jinhua People’s Hospital, Camden and Islington
Camden and Islington NHS Foundation Trust, i2b2 https://www.i2b2.org/,
▒n2c2 https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/, ▒MIMIC-III
https://physionet.org/content/mimiciii/1.4/.
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in performance either from annotation-level to whole-patient-
timeline-level evaluation due to the shift of data patterns over
time or gradual changes within the clinical practices. Further to
this, there is also the challenge of translating the application of
NLP across large historic datasets into incorporation pipelines of
real-time processing of clinical text within the EHR for individual-
level feedback, as well as the utility challenge of communicating
probabilistic clinical decision support where NLP models are not
100% accurate, and finding case studies that make use of new
capabilities (the ‘solution in search of a problem scenario’
common in data science). Lastly, but critically, integrating with
health systems would require robustness, resilience, stability and
flexibility. For example, at least, embedded NLP models should
ensure that they are not crashing and/or degrading clinical
systems. Such engineering requirements for critical systems are
usually not considered and rarely evaluated in the designs and
development of research-oriented NLP models.
Albeit these challenges, we observed several exciting transla-

tional developments that have been embedded with real-world
EHR systems or the near real-time research copies of them. The
CogStack81,140 text analytics framework has been deployed in
more than 5 NHS Trusts across the UK, supporting data
harmonisation144, semantic search81, risk detection and live
alerting145 and disease prevention146. The deployment of text
analytics capabilities with health systems has shown its great
potential in facilitating more efficient and cost-effective clinical
trials81,147. Another operational development is the use of clinical
NLP models for facilitating efficient medical coding141: funded by
NIHR recently as an AI Award, University College Hospital
colleagues have been comparing148,149 for automatically assigning
ICD-10 codes for hospital admissions.
The main gap or barrier to clinical NLP in the UK seems to be

impeded research access to real-world EHR data. First of all, there
are no openly accessible free-text EHRs from the UK. All three
openly accessible EHRs are from the US. While they are useful for
model development and transfer learning (e.g., using pre-trained
language models), the significant differences between the US and
the UK healthcare systems (for example UK’s discharge summaries
are usually much shorter) means that we risk developing models
that are less representative of the UK system. Having UK open EHR
datasets would allow the community to create benchmarks, train
large language models and co-design novel solutions, all of which
would greatly speed up the translational processes of research.
Secondly, very few TRE are clinical NLP-ready across the UK. The
UK now has one of the world’s best TREs (managed by NHS
Digital), hosting one of the world’s best national-level health
datasets—CVD-COVID-UK https://www.hdruk.ac.uk/projects/cvd-
covid-uk-project/. Another notable national initiative is the Open-
SAFELY150. However, these TREs contain no free-text EHR
components at the time of writing. Many local or regional TREs
does not support the necessary software environments (e.g.,
Python or NLP libraries) due to security concerns and/or they do
not have the computational resources to support scalable NLP.
Thirdly, there are no shareable large language models trained on
UK EHRs that could facilitate the community for transfer learning.
Finally, it is worth mentioning the line of work on synthetic free-
text health data generation151 for alleviating the pain of data
access. Such approaches are in their infancy but could be a
promising substitute.
The underlying reason behind the impeded research access is

perhaps the lack of a streamlined, reproducible and certified
process for making free-text EHRs research-ready. While there are
regulations and guidelines for health data research access, the
implementation of these for free-text is very much dependent on
the decisions and capacities of local (e.g., NHS Trust level or health
board level in Scotland) IG committees, who are frequently
overstretched and likely to lack specific experience dealing with
free-text health data. A new process of this sort, if adopted, would

need to lay out the whole pipeline of data anonymisation and
implement the steps from data sampling, preprocessing, annota-
tion, anonymisation, validation, iterative improvements and final
reporting. It would ideally be coordinated at a national level and
draw on what is a healthily growing area of experience and
expertise.
Clinical NLP in the UK is part of a wider international research

topic. A full quantitative comparison is outside of the scope of this
current review, but we will consider a few points, mainly
comparing clinical NLP in the United States (US) with the UK.
The majority of clinical NLP is carried out on English language text,
with only 10% of NLP papers in PubMed reporting the use of
another language152. This reflects a broader issue in general NLP,
where a small number of languages, first amongst them English,
dominate the research literature and the available tools, corpora
and representations153.
US researchers publish around 6 times the number of AI papers

published by UK researchers154, and it is reasonable to assume
that this is the case for sub-domains such as clinical NLP. This is
understandable, given that the US has six times the gross
domestic product of the UK155 and 5 times the population156.
Unlike most other national clinical NLP efforts, however, the UK
benefits more directly from US research by virtue of the common
use of the English language. Despite this, there is a need for
specific UK research: terminologies, healthcare systems and
clinical cultures all differ.
Compared to the UK, the US has greater levels of clinical NLP in

operational healthcare use, as opposed to pure NLP research or
epidemiology, this being the result of differing policy pressures. In
the US, the Patient Protection and Affordable Care Act 2010157,
known as Obamacare, and its emphasis on capturing clinical
information for meaningful use, has had a direct influence on work
to extract as much useful information as possible from EHRs and
from patient feedback (see for example158–160). In the UK, despite
the publication of several white papers encouraging and planning
for the use of AI in the NHS (e.g.161,162), there has never been a
policy impetus as clear as that provided by Obamacare.
There is also a US/UK difference in terms of the available

resources, such as clinical corpora and community challenges
centred on these corpora. In the US, several corpora are available
under lightweight access agreements, most notably MIMIC143, but
also more specialised corpora such as THYME163. Other corpora
have been made available for community challenges, such as the
series organised by I2B2 (e.g.164). The UK’s first semantically
annotated corpus of EHR text was reported in165. Interestingly,
neither the papers reporting this corpus nor the MRC grant that
funded it has picked up the searches in the current study. A
process was in place for making portions of this UK corpus
available to researchers, but it was complex and not used. EHR
free text from the CRIS system166 is available for use, but under
much stricter conditions than the widely-used US corpora.
Consequently, there has been a complete absence of UK
community challenges, with UK researchers instead participating
in US challenges, together with the widespread use of US corpora
in UK clinical NLP research.
To close some of the main gaps as a community, the Health Data

Research UK’s National Text Analytics Project Consortium (https://
www.hdruk.ac.uk/projects/national-text-analytics-project/) has estab-
lished working groups specifically to create a UK-wide free-text
databank and is piloting NLP model sharing of MedCAT models for
detecting SNOMED CT concepts with multiple secondary care
hospitals in England and internationally including University College
Hospital, Kings College Hospital, Guys and St Thomas’, Norfolk and
Norwich, Manchester, South London and The Maudsley and
University Hospitals Birmingham. The model-sharing agreement
and description of community tools can be found on the HDRUK
Gateway (https://www.healthdatagateway.org/). To unlock clinical
NLP’s full potential for improving health service and patient care,
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many more initiatives like these are needed with coordination,
synergy and collaboration between all stakeholders. In particular, the
connections between academia and health service providers need to
be expanded and strengthened. Interlinking the UK clinical NLP
community with international counterparts is not only nice to have
but also essential to address many challenging clinical questions,
such as better understanding rare diseases, for which a non-single
country could offer sufficient power in their data for revealing
evidence. This brings in new challenges, including cross-lingual
clinical NLP167 and federated NLP168. All these gaps and challenges
also open exciting opportunities for a better-interlinked community
in the UK and beyond.

METHODS
As shown in Fig. 1, the study comprises two parts: one studying
the community using network analysis and the other on research
and developments using a literature review. While the first is
focused on the UK national level, the research outputs include
those from the UK as part of international collaborations. This
work is not a clinical study, and no personally identifiable
information was collected, thus, ethical approval is not required.

Information collection and data extraction
Figure 9 illustrates our two-step process to (1) retrieve relevant
information from online data sources and (2) conduct data
extraction to obtain all relevant data for later analysis.

Step 1. Retrieving relevant clinical NLP projects. To identify the UK
clinical NLP community, we first retrieved relevant projects funded
by UK funding bodies (e.g., research councils and charities) and the
European Union’s (EU) research and innovation funding pro-
grammes. The inclusion criteria were programmes that have (a)
developed or applied NLP technologies; (b) solved a clinical, public
health or life science research problem that is directly applicable to
patient care and (c) involved at least one UK-based organisation.
We started with UK Research and Innovation (UKRI), which “is a

non-departmental public body of the Government of the United
Kingdom that directs research and innovation funding, funded
through the science budget of the Department for Business,

Energy and Industrial Strategy". UKRI provides an official Applica-
tion Programming Interface (API): https://gtr.ukri.org/resources/
api.html, which allows efficient access (software-based query and
extraction) to successful projects from nine UK-based funders,
including seven Research Councils, Innovate UK and Research
England169. Thirty-four combinations of keyword searches were
used to query the web service, which returned 107 unique
projects. A manual assessment was then conducted to remove
irrelevant projects according to the inclusion criteria, leaving 71
relevant projects.
A similar process was conducted for the UK’s National Institute

for Health Research (NIHR), a UK government agency which
finances research into health and care. Five keyword searches were
used to query the NIHR’s search service (https://
fundingawards.nihr.ac.uk/). The NIHR only funds projects for health
research allowing us to reduce query combinations from 34 to 5 by
using NLP-related keywords only. The search revealed 24 projects,
and after a manual assessment, 18 projects were deemed relevant.
For projects funded by European Union’s research programmes,

we obtained the data from Horizon 2020-funded projects from
https://cordis.europa.eu/projects, which contains all projects from
2014 to January 2022. The same set of UKRI keyword queries was
applied to these projects’ meta-data, which identified six projects.
After the manual assessment, five were deemed relevant. To
enable consistent downstream analysis, the funding amounts of
these projects were converted from the original currency (Euro) to
Pound Sterling using a rate of 1 to 0.83 (as of 25th January 2022).
Searches of three UK-based charities (Wellcome Trust, Cancer

Research UK and British Heart Foundation) did not find relevant
projects. Some of these funders do not provide sufficient metadata
(e.g., abstracts or summaries) for their funded projects. Therefore, it
is possible that relevant projects might have been missed due to
incomplete information.
To select projects that fit the inclusion/exclusion criteria, a total of

34 keyword combinations were used. We used broad terms for
higher sensitivity followed by a manual second filtering step on
query results. The automated retrieval codebase, including the full list
of keyword combinations, is available at https://tinyurl.com/5fnvdvrh.
The data collection was finalised on 25th January 2022. Overall, we

identified 94 relevant projects. The queries used and extraction scripts
are available in a code base referenced at the end of this manuscript.

Fig. 9 Information collection and data extraction. Step 1: Data were collected for funded clinical NLP projects by querying three searchable
datasets from UK and EU funding bodies and downloading project data from UK charities such as British Heart Foundation and Cancer
Research UK. Step 2: Data were extracted to obtain metadata of projects and their associated entities.
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Step 2. Extracting project metadata and associated entities. From
the identified projects, we further extended data extraction (see
the right part of Fig. 9) to collect project metadata, including title,
abstract, technical summary, start/end dates, funding amount,
project categories and health categories. For each project,
wherever possible, we also extracted its associated entities,
including related persons (principal investigators, co-investigators,
supervisors/students), organisations (lead organisations, collabor-
ating organisations and their metadata), funders and project
outputs (publications, software, datasets and others). In total, from
94 projects, we extracted 139 associated persons, 137 organisa-
tions and 431 publications. In particular, for the 137 organisations,
we manually classified them into three categories: research, NHS
(national health services) and industry.

Analysis methods
Community analysis. To enable an analysis of the UK’s clinical
NLP community, we created a network (or interactive graph)
linking four types of entities: projects (also called grants),
organisations, persons and funders. Links between these entities
were directly extracted from the project metadata. The following
analysis approaches were conducted.
(Timestamped and filtered network snapshots) This analysis

reveals the evolution of the community from different perspec-
tives, such as the number of projects, involved persons/organisa-
tions and funding budgets over the years and the trend of training
the next generation of clinical NLP leaders. The metadata of linked
entities (e.g., datetime or project categories) were used to create
different snapshots of the network.
(Centrality analysis) To identify the ‘key’ stakeholders in the

community, centrality analysis170 was conducted to quantify node
importance in the network. Five centrality measurements were
implemented, including degree, betweenness, closeness, eigen-
vector and PageRank. We report results on eigenvector-based
centrality scores (PageRank showed very similar results), which
measure the ‘influence’ of nodes in a graph. In particular, we
propose a relative centrality score metric as an intuitive quantifica-
tion of node influence among nodes of the same type. It is defined
as Eq. (1), where NodesTypeOf(n) represents the set of nodes that
have the same type as n. For example, a university with RCS= 3
would mean it is very influential in the clinical NLP community—
three times more than the median to be exact.

RCSðnÞ ¼ centralityðnÞ
medianðfcentralityðxÞjx 2 NodesTypeOfðnÞgÞ (1)

(Connectivity analysis) This is to identify clusters (or components)
in a network and quantify the strengths of links between and within
different clusters. This allows the identification of the core of the
community and, equally important, the weak links among sub-
communities. Specifically, we conducted a k-connectivity analysis171.
(Force-directed graph visualisation) This provides an overall

representation of the community that enables both inspections of
individual entities and illustrates the nature of clusters. Technically, a
force-directed visualisation172 of the network was implemented to
make the network accessible via a browser-based and
interactive form.

Literature review on research outputs. We conducted a literature
review of all publications from the community over the last 15
years to obtain a comprehensive understanding of the research
and development of clinical NLP.
(Information source) We selected relevant publications from the

431 publications extracted from outputs of the above-mentioned
94 projects.
(Eligibility criteria) The inclusion criteria were: (1) develop or

apply NLP technologies; (2) applied in health or life science
domains including genetics; (3) full articles including research

papers, preprints, conference publications, thesis and book
chapters. Exclusion criteria were: (1) animal studies; (2) not full
papers (e.g., poster); (3) review articles; (4) articles not accessible.
After the screening process, 107 publications were included for
final data extraction and review. The Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) flowchart of the
publication screening and selection process is illustrated in Fig. 10.
Two reviewers (J.W. and M.W.) first screened 20 studies indepen-
dently and achieved full agreement. Thereafter, screening of the
remaining studies was performed by the two reviewers indepen-
dently.
(Data extraction) Five reviewers (A.S., F.F., J.W., M.W. and Y.C.)

carried out data extraction independently based on a defined
protocol. Although there was a risk of bias through independent
review, this was reduced by a single reviewer, with MW randomly
selecting and double-checking a subset of each reviewer’s
results. From these papers, information was extracted on 10
dimensions: (1) publication metadata including title, authors,
publication year and article type; (2) international collaborators
defined as the countries of co-authors; (3) dataset information
including data categories (EHR, social media, literature and
others), data source, public availability and data size; (4) health
category including disease areas as defined by Clinical Data
Interchange Standards Consortium https://www.cdisc.org/
standards/therapeutic-areas/disease-area, and disease specifica-
tion; (5) NLP task types including named entity recognition,
entity normalisation, information retrieval, relation extraction,
natural language generation, text classification, temporal expres-
sion extraction, word sense disambiguation and other informa-
tion extraction; (6) NLP algorithm category including rule based,
ML (not using deep neural network), deep learning, and others;
(7) application category as defined in28; (8) knowledge repre-
sentation techniques including ontologies, customised diction-
ary, pretrained word embeddings, large language models like
BERT models173 and others; (9) availability of code base and
pretrained models; (10) deployment and testing in clinical
settings. Missing data was marked as ‘N/A’ during data
extraction.

DATA AVAILABILITY
The data for network analyses and the code for visualising the results are made
available at https://observablehq.com/@626e582587f7e383/uk-clinical-nlp-landscaping-
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431 publications extracted from 
94 projects as research outputs

361 publications after 
title/abstract screen

Identification

Screening

Eligibility 159 publications

202 publications not relevant

52 no full text, not NLP, animal 
studies, or little healthcare 

relevance

107 publications included in the 
literature reviewIncluded

Fig. 10 Flow chart describing publication identification for clinical
NLP literature review.We started with 431 extracted publications, out
of which 361 have sufficient information suitable for screening. The
title/abstract screen further removed 202 papers which were deemed
irrelevant. This left us 159 publications for an eligibility assessment
using inclusion/exclusion criteria on their full text. After this final check
step, 107 publications were included for the final review.
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