90 research outputs found

    Modeling Combustion in Supersonic Flows

    Get PDF
    This paper discusses the progress of work to model high-speed supersonic reacting flow. The purpose of the work is to improve the state of the art of CFD capabilities for predicting the flow in high-speed propulsion systems, particularly combustor flow-paths. The program has several components including the development of advanced algorithms and models for simulating engine flowpaths as well as a fundamental experimental and diagnostic development effort to support the formulation and validation of the mathematical models. The paper will provide details of current work on experiments that will provide data for the modeling efforts along with with the associated nonintrusive diagnostics used to collect the data from the experimental flowfield. Simulation of a recent experiment to partially validate the accuracy of a combustion code is also described

    Development of Methods to Predict the Effects of Test Media in Ground-Based Propulsion Testing

    Get PDF
    This report discusses work that began in mid-2004 sponsored by the Office of the Secretary of Defense (OSD) Test & Evaluation/Science & Technology (T&E/S&T) Program. The work was undertaken to improve the state of the art of CFD capabilities for predicting the effects of the test media on the flameholding characteristics in scramjet engines. The program had several components including the development of advanced algorithms and models for simulating engine flowpaths as well as a fundamental experimental and diagnostic development effort to support the formulation and validation of the mathematical models. This report provides details of the completed work, involving the development of phenomenological models for Reynolds averaged Navier-Stokes codes, large-eddy simulation techniques and reduced-kinetics models. Experiments that provided data for the modeling efforts are also described, along with with the associated nonintrusive diagnostics used to collect the data

    Supersonic Combustion Research at NASA

    Get PDF
    This paper discusses the progress of work to model high-speed supersonic reacting flow. The purpose of the work is to improve the state of the art of CFD capabilities for predicting the flow in high-speed propulsion systems, particularly combustor flowpaths. The program has several components including the development of advanced algorithms and models for simulating engine flowpaths as well as a fundamental experimental and diagnostic development effort to support the formulation and validation of the mathematical models. The paper will provide details of current work on experiments that will provide data for the modeling efforts along with the associated nonintrusive diagnostics used to collect the data from the experimental flowfield. Simulation of a recent experiment to partially validate the accuracy of a combustion code is also described

    Risk factors and vectors for SARS-CoV-2 household transmission: a prospective, longitudinal cohort study

    Get PDF
    Background Despite circumstantial evidence for aerosol and fomite spread of SARS-CoV-2, empirical data linking either pathway with transmission are scarce. Here we aimed to assess whether the presence of SARS-CoV-2 on frequently-touched surfaces and residents' hands was a predictor of SARS-CoV-2 household transmission. Methods In this longitudinal cohort study, during the pre-alpha (September to December, 2020) and alpha (B.1.1.7; December, 2020, to April, 2021) SARS-CoV-2 variant waves, we prospectively recruited contacts from households exposed to newly diagnosed COVID-19 primary cases, in London, UK. To maximally capture transmission events, contacts were recruited regardless of symptom status and serially tested for SARS-CoV-2 infection by RT-PCR on upper respiratory tract (URT) samples and, in a subcohort, by serial serology. Contacts' hands, primary cases' hands, and frequently-touched surface-samples from communal areas were tested for SARS-CoV-2 RNA. SARS-CoV-2 URT isolates from 25 primary case-contact pairs underwent whole-genome sequencing (WGS). Findings From Aug 1, 2020, until March 31, 2021, 620 contacts of PCR-confirmed SARS-CoV-2-infected primary cases were recruited. 414 household contacts (from 279 households) with available serial URT PCR results were analysed in the full household contacts' cohort, and of those, 134 contacts with available longitudinal serology data and not vaccinated pre-enrolment were analysed in the serology subcohort. Household infection rate was 28·4% (95% CI 20·8–37·5) for pre-alpha-exposed contacts and 51·8% (42·5–61·0) for alpha-exposed contacts (p=0·0047). Primary cases' URT RNA viral load did not correlate with transmission, but was associated with detection of SARS-CoV-2 RNA on their hands (p=0·031). SARS-CoV-2 detected on primary cases' hands, in turn, predicted contacts' risk of infection (adjusted relative risk [aRR]=1·70 [95% CI 1·24–2·31]), as did SARS-CoV-2 RNA presence on household surfaces (aRR=1·66 [1·09–2·55]) and contacts' hands (aRR=2·06 [1·57–2·69]). In six contacts with an initial negative URT PCR result, hand-swab (n=3) and household surface-swab (n=3) PCR positivity preceded URT PCR positivity. WGS corroborated household transmission. Interpretation Presence of SARS-CoV-2 RNA on primary cases' and contacts' hands and on frequently-touched household surfaces associates with transmission, identifying these as potential vectors for spread in households. Funding National Institute for Health Research Health Protection Research Unit in Respiratory Infections, Medical Research Council

    Ebola virus antibody decay-stimulation in a high proportion of survivors

    Get PDF
    Neutralizing antibody function provides a foundation for the efficacy of vaccines and therapies1,2,3. Here, using a robust in vitro Ebola virus (EBOV) pseudo-particle infection assay and a well-defined set of solid-phase assays, we describe a wide spectrum of antibody responses in a cohort of healthy survivors of the Sierra Leone EBOV outbreak of 2013–2016. Pseudo-particle virus-neutralizing antibodies correlated with total anti-EBOV reactivity and neutralizing antibodies against live EBOV. Variant EBOV glycoproteins (1995 and 2014 strains) were similarly neutralized. During longitudinal follow-up, antibody responses fluctuated in a ‘decay–stimulation–decay’ pattern that suggests de novo restimulation by EBOV antigens after recovery. A pharmacodynamic model of antibody reactivity identified a decay half-life of 77–100 days and a doubling time of 46–86 days in a high proportion of survivors. The highest antibody reactivity was observed around 200 days after an individual had recovered. The model suggests that EBOV antibody reactivity declines over 0.5–2 years after recovery. In a high proportion of healthy survivors, antibody responses undergo rapid restimulation. Vigilant follow-up of survivors and possible elective de novo antigenic stimulation by vaccine immunization should be considered in order to prevent EBOV viral recrudescence in recovering individuals and thereby to mitigate the potential risk of reseeding an outbreak

    The detection of a strong episignature for Chung–Jansen syndrome, partially overlapping with Börjeson–Forssman–Lehmann and White–Kernohan syndromes

    Get PDF
    Chung-Jansen syndrome is a neurodevelopmental disorder characterized by intellectual disability, behavioral problems, obesity and dysmorphic features. It is caused by pathogenic variants in the PHIP gene that encodes for the Pleckstrin homology domain-interacting protein, which is part of an epigenetic modifier protein complex. Therefore, we hypothesized that PHIP haploinsufficiency may impact genome-wide DNA methylation (DNAm). We assessed the DNAm profiles of affected individuals with pathogenic and likely pathogenic PHIP variants with Infinium Methylation EPIC arrays and report a specific and sensitive DNAm episignature biomarker for Chung–Jansen syndrome. In addition, we observed similarities between the methylation profile of Chung–Jansen syndrome and that of functionally related and clinically partially overlapping genetic disorders, White–Kernohan syndrome (caused by variants in DDB1 gene) and Börjeson–Forssman–Lehmann syndrome (caused by variants in PHF6 gene). Based on these observations we also proceeded to develop a common episignature biomarker for these disorders. These newly defined episignatures can be used as part of a multiclass episignature classifier for screening of affected individuals with rare disorders and interpretation of genetic variants of unknown clinical significance, and provide further insights into the common molecular pathophysiology of the clinically-related Chung–Jansen, Börjeson–Forssman–Lehmann and White–Kernohan syndromes.</p

    Quantifying neutralising antibody responses against SARS-CoV-2 in dried blood spots (DBS) and paired sera

    Get PDF
    The ongoing SARS-CoV-2 pandemic was initially managed by non-pharmaceutical interventions such as diagnostic testing, isolation of positive cases, physical distancing and lockdowns. The advent of vaccines has provided crucial protection against SARS-CoV-2. Neutralising antibody (nAb) responses are a key correlate of protection, and therefore measuring nAb responses is essential for monitoring vaccine efficacy. Fingerstick dried blood spots (DBS) are ideal for use in large-scale sero-surveillance because they are inexpensive, offer the option of self-collection and can be transported and stored at ambient temperatures. Such advantages also make DBS appealing to use in resource-limited settings and in potential future pandemics. In this study, nAb responses in sera, venous blood and fingerstick blood stored on filter paper were measured. Samples were collected from SARS-CoV-2 acutely infected individuals, SARS-CoV-2 convalescent individuals and SARS-CoV-2 vaccinated individuals. Good agreement was observed between the nAb responses measured in eluted DBS and paired sera. Stability of nAb responses was also observed in sera stored on filter paper at room temperature for 28 days. Overall, this study provides support for the use of filter paper as a viable sample collection method to study nAb responses.</p

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Procalcitonin Is Not a Reliable Biomarker of Bacterial Coinfection in People With Coronavirus Disease 2019 Undergoing Microbiological Investigation at the Time of Hospital Admission

    Get PDF
    Abstract Admission procalcitonin measurements and microbiology results were available for 1040 hospitalized adults with coronavirus disease 2019 (from 48 902 included in the International Severe Acute Respiratory and Emerging Infections Consortium World Health Organization Clinical Characterisation Protocol UK study). Although procalcitonin was higher in bacterial coinfection, this was neither clinically significant (median [IQR], 0.33 [0.11–1.70] ng/mL vs 0.24 [0.10–0.90] ng/mL) nor diagnostically useful (area under the receiver operating characteristic curve, 0.56 [95% confidence interval, .51–.60]).</jats:p
    corecore