403 research outputs found

    Assimilation of Wind Profiles from Multiple Doppler Radar Wind Profilers for Space Launch Vehicle Applications

    Get PDF
    Space launch vehicles utilize atmospheric winds in design of the vehicle and during day-of-launch (DOL) operations to assess affects of wind loading on the vehicle and to optimize vehicle performance during ascent. The launch ranges at NASA's Kennedy Space Center co-located with the United States Air Force's (USAF) Eastern Range (ER) at Cape Canaveral Air Force Station and USAF's Western Range (WR) at Vandenberg Air Force Base have extensive networks of in-situ and remote sensing instrumentation to measure atmospheric winds. Each instrument's technique to measure winds has advantages and disadvantages in regards to use for vehicle engineering assessments. Balloons measure wind at all altitudes necessary for vehicle assessments, but two primary disadvantages exist when applying balloon output on DOL. First, balloons need approximately one hour to reach required altitude. For vehicle assessments this occurs at 60 kft (18.3 km). Second, balloons are steered by atmospheric winds down range of the launch site that could significantly differ from those winds along the vehicle ascent trajectory. Figure 1 illustrates the spatial separation of balloon measurements from the surface up to approximately 55 kft (16.8 km) during the Space Shuttle launch on 10 December 2006. The balloon issues are mitigated by use of vertically pointing Doppler Radar Wind Profilers (DRWPs). However, multiple DRWP instruments are required to provide wind data up to 60 kft (18.3 km) for vehicle trajectory assessments. The various DRWP systems have different operating configurations resulting in different temporal and spatial sampling intervals. Therefore, software was developed to combine data from both DRWP-generated profiles into a single profile for use in vehicle trajectory analyses. Details on how data from various wind measurement systems are combined and sample output will be presented in the following sections

    Spatial and Temporal Analysis of Gene Expression during Growth and Fusion of the Mouse Facial Prominences

    Get PDF
    Orofacial malformations resulting from genetic and/or environmental causes are frequent human birth defects yet their etiology is often unclear because of insufficient information concerning the molecular, cellular and morphogenetic processes responsible for normal facial development. We have, therefore, derived a comprehensive expression dataset for mouse orofacial development, interrogating three distinct regions – the mandibular, maxillary and frontonasal prominences. To capture the dynamic changes in the transcriptome during face formation, we sampled five time points between E10.5–E12.5, spanning the developmental period from establishment of the prominences to their fusion to form the mature facial platform. Seven independent biological replicates were used for each sample ensuring robustness and quality of the dataset. Here, we provide a general overview of the dataset, characterizing aspects of gene expression changes at both the spatial and temporal level. Considerable coordinate regulation occurs across the three prominences during this period of facial growth and morphogenesis, with a switch from expression of genes involved in cell proliferation to those associated with differentiation. An accompanying shift in the expression of polycomb and trithorax genes presumably maintains appropriate patterns of gene expression in precursor or differentiated cells, respectively. Superimposed on the many coordinated changes are prominence-specific differences in the expression of genes encoding transcription factors, extracellular matrix components, and signaling molecules. Thus, the elaboration of each prominence will be driven by particular combinations of transcription factors coupled with specific cell:cell and cell:matrix interactions. The dataset also reveals several prominence-specific genes not previously associated with orofacial development, a subset of which we externally validate. Several of these latter genes are components of bidirectional transcription units that likely share cis-acting sequences with well-characterized genes. Overall, our studies provide a valuable resource for probing orofacial development and a robust dataset for bioinformatic analysis of spatial and temporal gene expression changes during embryogenesis

    Lamotrigine versus levetiracetam or zonisamide for focal epilepsy and valproate versus levetiracetam for generalised and unclassified epilepsy: two SANAD II non-inferiority RCTs

    Get PDF
    BackgroundLevetiracetam (Keppra®, UCB Pharma Ltd, Slough, UK) and zonisamide (Zonegran®, Eisai Co. Ltd, Tokyo, Japan) are licensed as monotherapy for focal epilepsy, and levetiracetam is increasingly used as a first-line treatment for generalised epilepsy, particularly for women of childbearing age. However, there is uncertainty as to whether or not they should be recommended as first-line treatments owing to a lack of evidence of clinical effectiveness and cost-effectiveness.ObjectivesTo compare the clinical effectiveness and cost-effectiveness of lamotrigine (Lamictal®, GlaxoSmithKline plc, Brentford, UK) (standard treatment) with levetiracetam and zonisamide (new treatments) for focal epilepsy, and to compare valproate (Epilim®, Sanofi SA, Paris, France) (standard treatment) with levetiracetam (new treatment) for generalised and unclassified epilepsy.DesignTwo pragmatic randomised unblinded non-inferiority trials run in parallel.SettingOutpatient services in NHS hospitals throughout the UK.ParticipantsThose aged ≥ 5 years with two or more spontaneous seizures that require anti-seizure medication.InterventionsParticipants with focal epilepsy were randomised to receive lamotrigine, levetiracetam or zonisamide. Participants with generalised or unclassifiable epilepsy were randomised to receive valproate or levetiracetam. The randomisation method was minimisation using a web-based program.Main outcome measuresThe primary outcome was time to 12-month remission from seizures. For this outcome, and all other time-to-event outcomes, we report hazard ratios for the standard treatment compared with the new treatment. For the focal epilepsy trial, the non-inferiority limit (lamotrigine vs. new treatments) was 1.329. For the generalised and unclassified epilepsy trial, the non-inferiority limit (valproate vs. new treatments) was 1.314. Secondary outcomes included time to treatment failure, time to first seizure, time to 24-month remission, adverse reactions, quality of life and cost-effectiveness.ResultsFocal epilepsy. A total of 990 participants were recruited, of whom 330 were randomised to receive lamotrigine, 332 were randomised to receive levetiracetam and 328 were randomised to receive zonisamide. Levetiracetam did not meet the criteria for non-inferiority (hazard ratio 1.329) in the primary intention-to-treat analysis of time to 12-month remission (hazard ratio vs. lamotrigine 1.18, 97.5% confidence interval 0.95 to 1.47), but zonisamide did meet the criteria (hazard ratio vs. lamotrigine 1.03, 97.5% confidence interval 0.83 to 1.28). In the per-protocol analysis, lamotrigine was superior to both levetiracetam (hazard ratio 1.32, 95% confidence interval 1.05 to 1.66) and zonisamide (hazard ratio 1.37, 95% confidence interval 1.08 to 1.73). For time to treatment failure, lamotrigine was superior to levetiracetam (hazard ratio 0.60, 95% confidence interval 0.46 to 0.77) and zonisamide (hazard ratio 0.46, 95% confidence interval 0.36 to 0.60). Adverse reactions were reported by 33% of participants starting lamotrigine, 44% starting levetiracetam and 45% starting zonisamide. In the economic analysis, both levetiracetam and zonisamide were more costly and less effective than lamotrigine and were therefore dominated. Generalised and unclassifiable epilepsy. Of 520 patients recruited, 260 were randomised to receive valproate and 260 were randomised to receive to levetiracetam. A total of 397 patients had generalised epilepsy and 123 had unclassified epilepsy. Levetiracetam did not meet the criteria for non-inferiority in the primary intention-to-treat analysis of time to 12-month remission (hazard ratio 1.19, 95% confidence interval 0.96 to 1.47; non-inferiority margin 1.314). In the per-protocol analysis of time to 12-month remission, valproate was superior to levetiracetam (hazard ratio 1.68, 95% confidence interval 1.30 to 2.15). Valproate was superior to levetiracetam for time to treatment failure (hazard ratio 0.65, 95% confidence interval 0.50 to 0.83). Adverse reactions were reported by 37.4% of participants receiving valproate and 41.5% of those receiving levetiracetam. Levetiracetam was both more costly (incremental cost of £104, 95% central range -£587 to £1234) and less effective (incremental quality-adjusted life-year of -0.035, 95% central range -0.137 to 0.032) than valproate, and was therefore dominated. At a cost-effectiveness threshold of £20,000 per quality-adjusted life-year, levetiracetam was associated with a probability of 0.17 of being cost-effective.LimitationsThe SANAD II trial was unblinded, which could have biased results by influencing decisions about dosing, treatment failure and the attribution of adverse reactions.Future workSANAD II data could now be included in an individual participant meta-analysis of similar trials, and future similar trials are required to assess the clinical effectiveness and cost-effectiveness of other new treatments, including lacosamide and perampanel.ConclusionsFocal epilepsy - The SANAD II findings do not support the use of levetiracetam or zonisamide as first-line treatments in focal epilepsy. Generalised and unclassifiable epilepsy - The SANAD II findings do not support the use of levetiracetam as a first-line treatment for newly diagnosed generalised epilepsy. For women of childbearing potential, these results inform discussions about the benefit (lower teratogenicity) and harm (worse seizure outcomes and higher treatment failure rate) of levetiracetam compared with valproate.Trial registrationCurrent Controlled Trials ISRCTN30294119 and EudraCT 2012-001884-64.FundingThis project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 25, No. 75. See the NIHR Journals Library website for further project information

    Randomized, Controlled Trial of the Long Term Safety, Immunogenicity and Efficacy of RTS,S/AS02(D) Malaria Vaccine in Infants Living in a Malaria-Endemic Region.

    Get PDF
    The RTS,S/AS malaria candidate vaccine is being developed with the intent to be delivered, if approved, through the Expanded Programme on Immunization (EPI) of the World Health Organization. Safety, immunogenicity and efficacy of the RTS,S/AS02(D) vaccine candidate when integrated into a standard EPI schedule for infants have been reported over a nine-month surveillance period. This paper describes results following 20 months of follow up. This Phase IIb, single-centre, randomized controlled trial enrolled 340 infants in Tanzania to receive three doses of RTS,S/AS02(D) or hepatitis B vaccine at 8, 12, and 16 weeks of age. All infants also received DTPw/Hib (diphtheria and tetanus toxoids, whole-cell pertussis vaccine, conjugated Haemophilus influenzae type b vaccine) at the same timepoints. The study was double-blinded to month 9 and single-blinded from months 9 to 20. From month 0 to 20, at least one SAE was reported in 57/170 infants who received RTS,S/AS02(D) (33.5%; 95% confidence interval [CI]: 26.5, 41.2) and 62/170 infants who received hepatitis B vaccine (36.5%; 95% CI: 29.2, 44.2). The SAE profile was similar in both vaccine groups; none were considered to be related to vaccination. At month 20, 18 months after completion of vaccination, 71.8% of recipients of RTS,S/AS02(D) and 3.8% of recipients of hepatitis B vaccine had seropositive titres for anti-CS antibodies; seroprotective levels of anti-HBs antibodies remained in 100% of recipients of RTS,S/AS02(D) and 97.7% recipients of hepatitis B vaccine. Anti-HBs antibody GMTs were higher in the RTS,S/AS02(D) group at all post-vaccination time points compared to control. According to protocol population, vaccine efficacy against multiple episodes of malaria disease was 50.7% (95% CI: -6.5 to 77.1, p = 0.072) and 26.7% (95% CI: -33.1 to 59.6, p = 0.307) over 12 and 18 months post vaccination, respectively. In the Intention to Treat population, over the 20-month follow up, vaccine efficacy against multiple episodes of malaria disease was 14.4% (95% CI: -41.9 to 48.4, p = 0.545). The acceptable safety profile and good tolerability of RTS,S/AS02(D) in combination with EPI vaccines previously reported from month 0 to 9 was confirmed over a 20 month surveillance period in this infant population. Antibodies against both CS and HBsAg in the RTS,S/AS02(D) group remained significantly higher compared to control for the study duration. Over 18 months follow up, RTS,S/AS02(D) prevented approximately a quarter of malaria cases in the study population. CLINICAL TRIALS: Gov identifier: NCT00289185

    Co-Nanomet: Co-ordination of Nanometrology in Europe

    Get PDF
    Nanometrology is a subfield of metrology, concerned with the science of measurement at the nanoscale level. Today’s global economy depends on reliable measurements and tests, which are trusted and accepted internationally. It must provide the ability to measure in three dimensions with atomic resolution over large areas. For industrial application this must also be achieved at a suitable speed/throughput. Measurements in the nanometre range should be traceable back to internationally accepted units of measurement (e.g. of length, angle, quantity of matter, and force). This requires common, validated measurement methods, calibrated scientific instrumentation as well as qualified reference samples. In some areas, even a common vocabulary needs to be defined. A traceability chain for the required measurements in the nm range has been established in only a few special cases. A common strategy for European nanometrology has been defined, as captured herein, such that future nanometrology development in Europe may build out from our many current strengths. In this way, European nanotechnology will be supported to reach its full and most exciting potential. As a strategic guidance, this document contains a vision for European nanometrology 2020; future goals and research needs, building out from an evaluation of the status of science and technology in 2010. It incorporates concepts for the acceleration of European nanometrology, in support of the effective commercial exploitation of emerging nanotechnologies. The field of nanotechnology covers a breadth of disciplines, each of which has specific and varying metrological needs. To this end, a set of four core technology fields or priority themes (Engineered Nanoparticles, Nanobiotechnology, Thin Films and Structured Surfaces and Modelling & Simulation) are the focus of this review. Each represents an area within which rapid scientific development during the last decade has seen corresponding growth in or towards commercial exploitation routes. This document was compiled under the European Commission Framework Programme 7 project, Co-Nanomet. It has drawn together input from industry, research institutes, (national) metrology institutes, regulatory and standardisation bodies across Europe. Through the common work of the partners and all those interested parties who have contributed, it represents a significant collaborative European effort in this important field. In the next decade, nanotechnology can be expected to approach maturity, as a major enabling technological discipline with widespread application. This document provides a guide to the many bodies across Europe in their activities or responsibilities in the field of nanotechnology and related measurement requirements. It will support the commercial exploitation of nanotechnology, as it transitions through this next exciting decade

    Training needs for staff providing remote services in general practice: a mixed-methods study

    Get PDF
    Background Contemporary general practice includes many kinds of remote encounter. The rise in telephone, video and online modalities for triage and clinical care requires clinicians and support staff to be trained, both individually and as teams, but evidence-based competencies have not previously been produced for general practice. Aim To identify training needs, core competencies, and learning methods for staff providing remote encounters. Design and setting Mixed-methods study in UK general practice. Method Data were collated from longitudinal ethnographic case studies of 12 general practices; a multi-stakeholder workshop; interviews with policymakers, training providers, and trainees; published research; and grey literature (such as training materials and surveys). Data were coded thematically and analysed using theories of individual and team learning. Results Learning to provide remote services occurred in the context of high workload, understaffing, and complex workflows. Low confidence and perceived unmet training needs were common. Training priorities for novice clinicians included basic technological skills, triage, ethics (for privacy and consent), and communication and clinical skills. Established clinicians’ training priorities include advanced communication skills (for example, maintaining rapport and attentiveness), working within the limits of technologies, making complex judgements, coordinating multi-professional care in a distributed environment, and training others. Much existing training is didactic and technology focused. While basic knowledge was often gained using such methods, the ability and confidence to make complex judgements were usually acquired through experience, informal discussions, and on-the-job methods such as shadowing. Whole-team training was valued but rarely available. A draft set of competencies is offered based on the findings. Conclusion The knowledge needed to deliver high-quality remote encounters to diverse patient groups is complex, collective, and organisationally embedded. The vital role of non-didactic training, for example, joint clinical sessions, case-based discussions, and in-person, whole-team, on-the-job training, needs to be recognised

    Characterisation of paediatric brain tumours by their MRS metabolite profiles

    Get PDF
    1H‐magnetic resonance spectroscopy (MRS) has the potential to improve the noninvasive diagnostic accuracy for paediatric brain tumours. However, studies analysing large, comprehensive, multicentre datasets are lacking, hindering translation to widespread clinical practice. Single‐voxel MRS (point‐resolved single‐voxel spectroscopy sequence, 1.5 T: echo time [TE] 23–37 ms/135–144 ms, repetition time [TR] 1500 ms; 3 T: TE 37–41 ms/135–144 ms, TR 2000 ms) was performed from 2003 to 2012 during routine magnetic resonance imaging for a suspected brain tumour on 340 children from five hospitals with 464 spectra being available for analysis and 281 meeting quality control. Mean spectra were generated for 13 tumour types. Mann–Whitney U‐tests and Kruskal–Wallis tests were used to compare mean metabolite concentrations. Receiver operator characteristic curves were used to determine the potential for individual metabolites to discriminate between specific tumour types. Principal component analysis followed by linear discriminant analysis was used to construct a classifier to discriminate the three main central nervous system tumour types in paediatrics. Mean concentrations of metabolites were shown to differ significantly between tumour types. Large variability existed across each tumour type, but individual metabolites were able to aid discrimination between some tumour types of importance. Complete metabolite profiles were found to be strongly characteristic of tumour type and, when combined with the machine learning methods, demonstrated a diagnostic accuracy of 93% for distinguishing between the three main tumour groups (medulloblastoma, pilocytic astrocytoma and ependymoma). The accuracy of this approach was similar even when data of marginal quality were included, greatly reducing the proportion of MRS excluded for poor quality. Children's brain tumours are strongly characterised by MRS metabolite profiles readily acquired during routine clinical practice, and this information can be used to support noninvasive diagnosis. This study provides both key evidence and an important resource for the future use of MRS in the diagnosis of children's brain tumours
    corecore