72 research outputs found

    Matrix analysis of identifiability of some finite markov models

    Full text link
    Methods developed by Bernbach [1966] and Millward [1969] permit increased generality in analyses of identifiability. Matrix equations are presented that solve part of the identifiability problem for a class of Markov models. Results of several earlier analyses are shown to involve special cases of the equations developed here. And it is shown that a general four-state chain has the same parameter space as an all-or-none model if and only if its representation with an observable absorbing state is lumpable into a Markov chain with three states.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45730/1/11336_2005_Article_BF02291365.pd

    Clinical application of circulating tumor cells and circulating tumor DNA in uveal melanoma

    Get PDF
    Purpose To evaluate the feasibility of using circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) for the management of uveal melanoma (UM). Patients and Methods Low-coverage whole-genome sequencing was used to determine somatic chromosomal copy number alterations (SCNAs) in primary UM tumors, ctDNA, and whole-genome amplified CTCs. CTCs were immunocaptured using an antimelanoma-associated chondroitin sulfate antibody conjugated to magnetic beads and immunostained for melanoma antigen recognised by T cells 1 (MART1)/glycoprotein 100 (gp100)/S100 calcium-binding protein β (S100β). ctDNA was quantified using droplet digital polymerase chain reaction assay for mutations in the GNAQ, GNA11, PLCβ4, and CYSLTR2 genes. Results SCNA analysis of CTCs and ctDNA isolated from a patient with metastatic UM showed good concordance with the enucleated primary tumor. In a cohort of 30 patients with primary UM, CTCs were detected in 58% of patients (one to 37 CTCs per 8 mL of blood), whereas only 26% of patients had detectable ctDNA (1.6 to 29 copies/mL). The presence of CTCs or ctDNA was not associated with tumor size or other prognostic markers. However, the frequent detection of CTCs in patients with early-stage UM supports a model in which CTCs can be used to derive tumor-specific SCNA relevant for prognosis. Monitoring of ctDNA after treatment of the primary tumor allowed detection of metastatic disease earlier than 18F-labeled fluorodeoxyglucose positron emission tomography in two patients. Conclusion The presence of CTCs in localized UM can be used to ascertain prognostic SCNA, whereas ctDNA can be used to monitor patients for early signs of metastatic disease. This study paves the way for the analysis of CTCs and ctDNA as a liquid biopsy that will assist with treatment decisions in patients with UM

    Clinical application of circulating tumor cells and circulating tumor DNA in uveal melanoma

    Get PDF
    Purpose To evaluate the feasibility of using circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) for the management of uveal melanoma (UM). Patients and Methods Low-coverage whole-genome sequencing was used to determine somatic chromosomal copy number alterations (SCNAs) in primary UM tumors, ctDNA, and whole-genome amplified CTCs. CTCs were immunocaptured using an antimelanoma-associated chondroitin sulfate antibody conjugated to magnetic beads and immunostained for melanoma antigen recognised by T cells 1 (MART1)/glycoprotein 100 (gp100)/S100 calcium-binding protein β (S100β). ctDNA was quantified using droplet digital polymerase chain reaction assay for mutations in the GNAQ, GNA11, PLCβ4, and CYSLTR2 genes. Results SCNA analysis of CTCs and ctDNA isolated from a patient with metastatic UM showed good concordance with the enucleated primary tumor. In a cohort of 30 patients with primary UM, CTCs were detected in 58% of patients (one to 37 CTCs per 8 mL of blood), whereas only 26% of patients had detectable ctDNA (1.6 to 29 copies/mL). The presence of CTCs or ctDNA was not associated with tumor size or other prognostic markers. However, the frequent detection of CTCs in patients with early-stage UM supports a model in which CTCs can be used to derive tumor-specific SCNA relevant for prognosis. Monitoring of ctDNA after treatment of the primary tumor allowed detection of metastatic disease earlier than 18F-labeled fluorodeoxyglucose positron emission tomography in two patients. Conclusion The presence of CTCs in localized UM can be used to ascertain prognostic SCNA, whereas ctDNA can be used to monitor patients for early signs of metastatic disease. This study paves the way for the analysis of CTCs and ctDNA as a liquid biopsy that will assist with treatment decisions in patients with UM

    Lithium Regulates Glycogen Synthase Kinase-3β in Human Peripheral Blood Mononuclear Cells: Implication in the Treatment of Bipolar Disorder

    Get PDF
    Background: Bipolar disorder has been linked to alterations in the multifunctional enzyme glycogen synthase kinase-3β (GSK3β). The mood stabilizer lithium inhibits GSK3β in vitro and in mouse brain, and this is currently the strongest known potential therapeutic target of lithium. We tested whether lithium modified GSK3β in vivo or in vitro in peripheral blood mononuclear cells (PBMCs) from healthy control and bipolar disorder subjects. Methods: The PBMCs were obtained from 23 healthy control subjects, 9 bipolar subjects currently treated with lithium, and 13 lithium-free bipolar subjects. Immunoblot analyses were used to measure the inhibited, serine9-phosphorylated GSK3β. Results: The level of phospho-Ser9-GSK3β in PBMCs was regulated by agents that modified kinases and phosphatases acting on GSK3β and was increased by in vitro lithium treatment. More important, phospho-Ser9-GSK3β levels were eightfold higher in PBMCs from lithium-treated bipolar than healthy control subjects. Conclusions: Signaling pathways regulating serine9-phosphorylation of GSK3β can be studied in human PBMCs. Both in vitro and in vivo therapeutic lithium treatment is associated with a large increase in phospho-Ser9-GSK3β in PBMCs. Therefore, the inhibitory serine9-phosphorylation of GSK3β in human PBMCs may provide a biochemical marker to evaluate the association between GSK3β inhibition and therapeutic responses to lithium treatment

    The effect of food availability, age or size on the RNA/DNA ratio of individually measured herring larvae: laboratory calibration

    Get PDF
    RNA/DNA ratios in individual herring (Clupea harengus) larvae (collected from Kiel Bay, Baltic Sea, in 1989) were measured and proved suitable for determining nutritional status. Significant differences between fed and starving larvae appeared after 3 to 4 d of food deprivation in larvae older than 10 d after hatching. The RNA/DNA ratio showed an increase with age or length of the larvae and was less pronounced in starving larvae compared to fed larvae. The individual variability of RNA/DNA ratios in relation to larval length of fed larvae and of larvae deprived of food for intervals of 6 to 9 d is presented. Based on the length dependency and the individual variability found within the RNA/DNA ratios, a laboratory calibration is given to determine whether a larva caught in the field has been starving or not. An example for a field application is shown

    Disconnected human resource? Proximity and the (mis)management of workplace conflict

    Get PDF
    The development of more remote sources of advice has been a notable feature of the contemporary human resource (HR) function. However, the consequences for the management of workplace conflict are largely ignored within the academic literature. This study draws on data from two qualitative studies, which examine the experiences of HR practitioners (HRPs), line managers and trade union representatives in handling and resolving conflict. It explores how different dimensions of organisational proximity shape the relationships between HRPs and other key stakeholders, and the impact of this on conflict management. The findings suggest that formal, risk averse approaches to conflict are not simply a result of geographical distance. Instead, functional specialisation has not only eroded cognitive and social proximity between HRPs, line managers and employee representatives but also within the HR function itself. This has triggered the reinforcement of bureaucratic control and embedded responses that emphasise compliance rather than resolution

    High-Throughput Characterization of Porous Materials Using Graphics Processing Units

    Get PDF
    We have developed a high-throughput graphics processing units (GPU) code that can characterize a large database of crystalline porous materials. In our algorithm, the GPU is utilized to accelerate energy grid calculations where the grid values represent interactions (i.e., Lennard-Jones + Coulomb potentials) between gas molecules (i.e., CH4_{4} and CO2_{2}) and material's framework atoms. Using a parallel flood fill CPU algorithm, inaccessible regions inside the framework structures are identified and blocked based on their energy profiles. Finally, we compute the Henry coefficients and heats of adsorption through statistical Widom insertion Monte Carlo moves in the domain restricted to the accessible space. The code offers significant speedup over a single core CPU code and allows us to characterize a set of porous materials at least an order of magnitude larger than ones considered in earlier studies. For structures selected from such a prescreening algorithm, full adsorption isotherms can be calculated by conducting multiple grand canonical Monte Carlo simulations concurrently within the GPU

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
    corecore