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Abstract

We have developed a high-throughput graphics processing units (GPU) code that can char-

acterize a large database of crystalline porous materials. In our algorithm, the GPU is uti-

lized to accelerate energy grid calculations where the grid values represent interactions (i.e.,

Lennard-Jones + Coulomb potentials) between gas molecules (i.e., CH4 and CO2) and mate-

rial’s framework atoms. Using a parallel flood fill CPU algorithm, inaccessible regions inside

the framework structures are identified and blocked based on their energy profiles. Finally,

we compute the Henry coefficients and heats of adsorption through statistical Widom insertion

Monte Carlo moves in the domain restricted to the accessible space. The code offers significant

speedup over a single core CPU code and allows us to characterize a set of porous materials
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at least an order of magnitude larger than ones considered in earlier studies. For structures

selected from such a prescreening algorithm, full adsorption isotherms can be calculated by

conducting multiple grand canonical Monte Carlo simulations concurrently within the GPU.

1 Introduction

Porous materials, such as zeolites and metal organic frameworks (MOFs), have been exploited in

many current technologies and are considered to be a very important class of materials for many

new industrial applications. For example, zeolites are commonly used as chemical catalysts, in

particular as cracking catalysts in oil refinement, membranes for separations, and water soften-

ers.1–4 Additionally, there is an increasing interest in utilizing zeolites as membranes or adsor-

bents for CO2 capture applications.5–8 Other materials, such as MOFs9,10 and their subfamily of

zeolitic imidazolate frameworks (ZIFs),11 have enormous potential for gas separations and storage

as well.12,13

A key factor that determines the utility of any nanoporous material is its optimal pore topol-

ogy along with the chemical composition for given conditions in a particular application. There

are approximately 190 known unique zeolite frameworks14 in more than 1400 zeolite crystals

of various chemical composition and geometry.15 However, these experimentally known zeolites

constitute only a very small fraction of more than 2.7 million structures that are feasible on theoret-

ical grounds.16,17 Of these, between 300,000 and 600,000 are predicted to be thermodynamically

accessible as aluminosilicates, with the remainder also potentially accessible via elemental substi-

tution.18,19 All of the zeolite structures in this research work are comprised of silicon and oxygen

atoms, making these materials much more simple in terms of their chemical composition than

ZIFs or MOFs. The chemical composition of zeolite structures can be altered by replacing some

of the silicon atoms with aluminum (or other) atoms, and then adding cations (e.g. Na+) to impose

charge neutrality. Changing the chemical makeup of zeolite materials in this way further increases

the number of possible structures. Structure sets of similar or even greater size are expected for
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other nanoporous materials such as ZIFs,7 which offer greater flexibility in the choice of building

blocks.

In an attempt to identify optimal materials for various applications, such as gas separations,5–7

researchers have started to screen large databases of porous materials. Molecular simulation tech-

niques, such as the grand canonical Monte Carlo (GCMC) method, are often used in numerical

simulations to accurately predict properties of materials and their guest-adsorption characteristics

expressed as an experimentally verified adsorption isotherm.20–22 However, the computational cost

of molecular simulations is high, significantly limiting the number of structures that can be ana-

lyzed. To avoid the high computational costs, most of the screening strategies rely on thorough pre-

screening of materials, which filters out structures based on easily obtainable structural properties,

such as pore diameters and framework energy. As an example, Haldouplis et al. screened 250,000

zeolites while only about 8,000 were characterized using molecular simulations.6 Nonetheless, it

is important to note important developments in algorithms that allow high-throughput characteri-

zation of porous materials via generation of structural parameters used for pre-screening5,23–25 or

database sampling approaches.26

The importance of these screening strategies motivated us to approach this task from a high-

performance computing point of view and utilize fast molecular simulation techniques that allow

us to characterize a very large set of porous materials – more than an order of magnitude larger

than what has been reported previously by other researchers. Additionally, we addressed a prac-

tical complication limiting the characterization of large sets of materials, which is determination

whether pores ina material are accessible. This step typically involves visual inspection,35 which

becomes cumbersome with large number of structures. Our approach integrates an automatic anal-

ysis of topology of the materials’ void space, and accordingly, the simulation domain can be de-

fined within the accessible void space of a material and this domain reflects the space available to

molecules in experiments.

In order to process large sets of materials within reasonable time, our molecular simulation tool

utilizes graphical processing units (GPUs) to efficiently conduct parallel calculations. GPUs are
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hardware accelerators initially developed to accelerate graphics related tasks. With the advent of

NVIDIA’s CUDA (compute unified device architecture) and subsequent development of the CUDA

software interface, general purpose GPU (GPGPU) programming has become more prevalent and

commonplace in the scientific community.27 Unlike conventional CPUs, GPUs have many more

transistors devoted to data processing and as such, can provide significant performance improve-

ment in computational problems that can be easily mapped into its multi-threaded hardware. In the

context of molecular simulations, GPGPU computing has been mainly used to accelerate molecu-

lar dynamics (MD) and Monte Carlo (MC) simulations.28–31 Our molecular simulation GPU code

takes advantage of the fact that the computationally intensive bottleneck routines can easily be

mapped into a SIMD (same instruction multiple data) format, making it ideal to port the code

from the CPU to the GPU. Although this article focuses on GPU simulation results of the zeolite

structures, the code can be easily extended to process other important classes of porous materials

such as MOFs or ZIFs and can accelerate characterization in those materials as well. As such, the

techniques described in this work can generalize well to many other systems.

The manuscript is organized as follows. In Section 2, we discuss the algorithmic details of our

hybrid GPU + CPU characterization/screening code. In Section 3, we analyze the performance of

our implementation and present results obtained using our GPU code. In Section 4, we summarize

the important findings in our work and discuss avenues for future work.

2 Algorithm for Characterizing Porous Materials

In this work, we focus on CO2 and CH4 gas molecules as they comprise representative examples

for the behavior of molecules with, respectively, partial atomic charges and no charges. However,

the techniques described in this work can readily extend to other gas molecules such as N2, He, and

H2O, as well. The zeolite framework is assumed to be rigid, which is a reasonable approximation3

and as such, only the gas-framework and the gas-gas interactions are considered. As a means

to characterize the zeolite structures, we compute the Henry coefficient (KH) and the heats of
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adsorption (∆hi) values of CO2 and CH4. These quantities characterize adsorption of the gas

molecules in porous materials. KH is a basic constant that relates the equilibrium between the gas

and the adsorbed phase (ρ = KH P), and hence describes adsorption at very low pressure regime.

In the context of CO2 capture, an ideal material would exhibit a large CO2 KH compared to the KH

values of other flue gases, resulting in high selectivity for CO2. For carbon capture of flue gases,

the pressure values are relatively low and for most systems, KH serves as an important quantity to

characterize large material databases. KH and ∆hi can be computed from a Monte Carlo simulation:

KH = β 〈exp(−βUins)〉test (1)

and

∆hi =
〈Uinsexp(−βUins)〉
〈exp(−βUins)〉

, (2)

with β = 1 / (kBT ) with kB representing the Boltzmann constant and T indicating the temperature

of the system. T is fixed at 300K in all simulations reported in this work. Uins represents the

test particle energy of the gas molecule at a random position in the material. 〈 〉test indicates

that in the ensemble average, the test particle does contribute to the energy of the system. Upon

taking a sufficiently large number of Monte Carlo Widom insertions, which consist of randomized

insertions of the gas molecules in the simulated volume, the KH and the ∆hi of the gas molecules

can be computed with a great deal of accuracy.

The KH and the ∆hi computational algorithm for a given porous material consists of the follow-

ing three important steps:

1. construct an energy grid that stores the energy values of the test gas molecule at discrete

positions of the structure’s unit cell ( 2.1),

2. automatically identify inaccessible regions within the structure utilizing the energy grid val-

ues from the previous calculation ( 2.2), and

3. conduct Widom insertion Monte Carlo moves to compute the Henry coefficient KH and the
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heats of adsorption ∆hi of the gas molecule ( 2.3).

This algorithm is utilized to characterize all materials in the theoretical zeolite database. We de-

scribe the algorithm outlined above in detail in the subsequent subsections. In 2.4, we briefly

describe the grand canonical Monte Carlo algorithm used to compute the adsorption isotherms in-

side the GPU, which can provide adsorption properties of the materials at higher pressure regimes.

2.1 Energy Grid Construction

All of the zeolite materials in our simulations are crystalline structures and accordingly, the ad-

sorption properties of each of these materials can be accurately characterized by examining a small

number of unit cells and imposing a periodic boundary condition. Inside the numerical domain of

a single unit cell, we construct a three-dimensional energy grid for each of the zeolite structures.

The grid points of the energy grid each represent the sum of the Lennard-Jones and the Coulomb

potentials between the gas molecule and all of the framework atoms that make relevant contribu-

tion to the interaction. The spacing of the energy grid is fixed to be 0.1Å along all three spatial

dimensions. The Lennard-Jones potential and the Coulomb potentials are defined as follows:

ULJ(r) = 4ε
[(σ

r

)12
−
(σ

r

)6
]

(3)

and

Ucoul(r) =
qiq j

4πεor
. (4)

Here, r represents the distance between two particles, ε indicates the depth of the potential well,

σ represents the effective core size of the particles with the potential well located at 21/6σ , qi and

q j indicate charges of the two particles, and εo represents the material permittivity. For all pair-

wise interactions, a Lennard-Jones cutoff radius RC = 12.0Å is imposed such that the interaction

is shifted to zero for r > RC by subtraction of ULJ(RC) from ULJ(r) for all r ≤ RC. In our code,

the long-range Coulomb interactions between the charged particles are approximated by the Ewald

summation method. The work to compute the periodic Coulomb potentials is divided into summa-
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tions in both real and Fourier components to accelerate convergence. All of the force fields used

in this work come from Garcia-Perez et al. and Dubbeldam et al.,32,33 which have been shown to

reproduce the experimental adsorption for various zeolite structures.

Given that a very large number of energy grid points must be computed (over ten million

for most zeolite structures), GPU hardware architecture can be efficiently utilized by employing

thousands of CUDA threads to concurrently compute the energy values at these points in parallel.

In our algorithm, the total number of CUDA threads is set to be equal to the total number of

energy grid points, creating a one-to-one mapping between threads and grid points. Accordingly,

each CUDA thread computes the interaction between the gas molecule at the specified grid point

and all the framework atoms. The number of framework atoms, Ntot, is in most zeolites small

enough (Ntot < 2000 atoms) such that all data required fits into the 64kB constant memory of the

Tesla C2050 Fermi cards used, minimizing the number of GPU DRAM transactions. For Ntot

> 2000, the data containing the framework atom positions is stored in the slower GPU DRAM,

which leads to a decrease in performance. In practice this performance deterioration is small and

has no major impact on our experiments. Also, in the hypothetical zeolite database, the number

of structures with Ntot > 2000 is relatively small and, thus, the overall wall time to process an

entire database is not affected significantly by the reduced memory bandwidth. Since the constant

memory bandwidth is greater than the shared/L1 cache memory and given that we only require

read operations from the framework atoms, the decision was made to choose constant memory

over other fast memory available in the GPU. For a linear molecule like CO2, we compute separate

carbon and oxygen grids for the Lennard-Jones interaction while computing only one Coulomb

grid (e.g., carbon atom Coulomb grid). The Coulomb interaction values for the second atom (i.e.,

oxygen) can be obtained by multiplying the grid point values of the carbon Coulomb grid by a

pre-factor corresponding to the ratio of the charges of the two atoms. This strategy does not only

reduce computation time, but it also reduces the amount of GPU DRAM required; this is important

given the 3GB DRAM constraint of the Tesla C2050 cards.

In order to determine inaccessible regions within the unit cell of the structure (described in
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2.2), an additional energy grid is required. This additional grid is constructed to encode the total

energy of the gas molecule at each of the grid points, and accordingly approximately maps to the

occupation probability of the gas molecule at that position (i.e., a higher total energy corresponds

to a lower probability of occupancy). For molecules such as CH4, which are modeled as point

particles, this total energy grid is equivalent to the individual energy grid computed in the en-

ergy grid construction routine. However, for linear molecules, such as CO2 and N2, or non-linear

molecules, such as H2O, the total energy values need to be obtained separately from the individual

energy grids computed by the grid construction routine. We obtain approximate values of ener-

gies of these molecules and store the result in a single grid point by conducting a large number of

test rotation moves about the grid point and computing its average energy. In CO2, for example,

the carbon atom is positioned to coincide with each grid point in turn, and Nrot = 100 random

rotations are conducted on the two oxygen atoms about that point. Because rotations can be con-

ducted independently and in parallel, the test rotation routine maps well to the GPU. We utilize the

CUDA CURAND library to generate the random numbers that determine the gas molecule orien-

tations. The energy value for the carbon atom is sampled directly from the Lennard-Jones and the

Coulomb energy grids, whereas the energy values for the two randomized oxygen atoms are ob-

tained using linear interpolation functions from the energy grid values. The trilinear interpolation

function samples eight nearest neighbor points in the energy grid from the rectangular voxel that

encompasses the sampled point. In cases where the identification of inaccessible regions within a

structure is unnecessary, the test rotation routine can be skipped in order to improve computational

performance.

2.2 Pocket Blocking Algorithm

In some materials, the arrangement of atoms in the structure is such that there exist regions of

space which a guest molecule could occupy, but which it cannot access, due to the positions of

surrounding atoms. These regions constitute ‘inaccessible pockets’ of void space, and are con-

trasted with accessible regions of space, i.e. ‘channels’. In computer calculations it is critical to

8



account for these positions such that they are not considered in, for example, the calculation of

guest-accessible volumes or surface areas, or the prediction of adsorption properties using molecu-

lar simulation techniques.34,35 It is typical to detect inaccessible pockets through visual inspection

of so-called pore landscapes, and subsequently to block them with exclusion spheres.36 However,

it is not practical to perform a visualization-based analysis on the very large quantity of materials

we are concerned with. Accordingly, we have recently developed algorithms for the automatic

segmentation of void space (into accessible and inaccessible regions) and exclusion of pockets.37

The original algorithms37 relied on partial differential equation (PDE)-based front propagation

techniques, by which the grid representing the guest-accessible positions (or, in the case of complex

non-spherical probes, guest accessible orientations at each position38) can be segmented. There

are numerous advantages to a PDE-based segmentation algorithm, including the approximation

of paths of least resistance between certain positions within the structure, which can give insights

regarding diffusion. However, for the purposes of high-throughput characterization - of the order

of hundreds of thousands of structures or more - the additional information obtained by solving

the PDE is generally not of critical importance. Therefore, in order to accelerate this process, we

perform a more simplistic segmentation using a parallel flood fill (also known as seed fill, boundary

fill or bucket fill) algorithm described in Ref.39 Flood fill is a recursive algorithm to determine the

bounds of a connected region, and so like PDE-based methods, can segment a grid into distinct,

connected regions of guest-accessible space. Following this process, regions which connect across

the periodic boundary are detected and merged. In our parallel implementation, each CPU thread

is assigned a separate subdomain of the unit cell, upon which it performs segmentation using flood

fill. Connections across subdomain boundaries are considered in the same manner as those which

cross the periodic boundary of the cell. We then proceed to identify and block inaccessible regions

as discussed in the following paragraphs.

In this study, we represent the material with a three-dimensional energy-grid. The energy

terms calculated at each discrete grid point can be interpreted as conveying the probability of

the guest molecule occupying that position in the form of the Boltzmann factor, exp(-βEi) with
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E i representing the energy of the ith grid point. We interpret this grid in a binary fashion, as

containing grid points which can or cannot be occupied by the guest molecule in the timeframe of

our application. We set:

i f (Ei < (p∗T ))→ accessible;else→ inaccessible; (5)

where T is the temperature, and p relates to the probability of the position being occupied. At

long timescales, for instance in geologic applications, high barriers can be overcome, and so p can

take a high value; however for our carbon capture gas separation application we set p = 15 such

that a point is accessible if exp(-Ei) < exp(-15×T ). This number was chosen large enough such

that in a typical zeolite crystal structure, these forbidden regions are considered to be diffusively

inaccessible on an experimental timescale. From this binary interpretation of the energy grid,

the material’s unit cell is segmented into disconnected, non-periodic regions of void space using

parallel flood fill. Each of these distinct regions is then analyzed to determine whether it forms a

channel or an inaccessible pocket. We examine the positions where each region reaches a face of

the unit cell, and inspect their periodic neighbors for accessibility, connecting these regions; the

boundaries between each CPU thread’s flood fill domain are inspected in the same manner. Using

this method we classify regions as channels if they constitute a loop through the void space, else

as pockets (see Figure 1).

As discussed above, it is important to exclude inaccessible pockets prior to performing tech-

niques such as Monte Carlo sampling in order to avoid false contributions of the energy term within

inaccessible regions to the measured behavior of the overall system. We have devised two tech-

niques for the exclusion of these inaccessible regions. The first approach is to generate a set of

exclusion spheres which span each pocket, without interfering with other regions. The algorithm

for generating these spheres is described in Ref.37 In the subsequent Monte Carlo step, moves

which are within an exclusion sphere are rejected. The obtained set of blocking spheres can be

visualized or used in other molecular simulation packages. The second approach, which is utilised
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in our high-throughput analysis, is simply to mark grid points which are within inaccessible space

by setting their energy-grid values to be prohibitively large. This saves time by bypassing the gen-

eration of blocking spheres, and in the Widom insertion step the high values at these points are

sufficient to identify the inaccessible space. This constitutes a further performance improvement

with respect to our earlier approaches.37,39 Both of these techniques are implemented in our tool

as multicore CPU functions, wherein each thread works independently to exclude an individual

pocket.

Figure 1: A two-dimensional illustration of the pocket blocking technique. Having segmented
the energy-grid into distinct regions of occupiable space, we examine the positions where regions
touch the periodic boundary. Hence, we merge regions 1 and 4 and find that they form a channel;
regions 2 and 3 are pockets since they do not reach the boundary; and regions 5 and 6 are merged
to form a pocket which crosses the periodic boundary.

2.3 Widom Insertion Monte Carlo

Utilizing the energy grids, the KH and the ∆hi of gas molecules inside porous materials can be

calculated via Widom insertion Monte Carlo moves. Similar to the test rotation routine, Widom

insertion is conducted inside the GPU, again utilizing the CUDA CURAND library for random

number generation. For CH4, the insertion algorithm entails choosing random particle positions

uniformly sampled from the entire simulation box and repeating this process while sampling the
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Lennard-Jones potential values via interpolation using values from the energy grid. For CO2, the

carbon atom is randomly placed uniformly sampled from the entire simulation volume, similar to

the case of CH4, while both the Lennard-Jones and the Coulomb interaction energies of the carbon

atom are sampled from the energy grids via linear interpolation functions. In zeolite structures

that have non-orthogonal unit cells, the randomly generated position value might fall outside of

the unit cell, which causes the point to be rejected without making contribution to the Monte Carlo

statistics. Also, if the position of the carbon atom falls inside the inaccessible region, the sampled

energy value would be very high due to the high energy values set in the CPU pocket blocking

routine. The energy value is set high enough (i.e. 1 million Kelvin) such that the entire CO2

molecule would possess large energy regardless of the values sampled from the other two oxygen

atoms. The same holds true in case that any of the atoms falls inside the inaccessible region. Once

the insertion of the carbon atom is finished, the algorithm proceeds to insert the first oxygen atom

by randomly sampling from a surface of a sphere with a radius equal to the bond length of CO2, i.e.,

1.16Å. If the oxygen atom falls outside of the unit cell, then the periodic boundary condition is used

to move the position of the atom back inside the unit cell via appropriate displacements. Finally,

the second oxygen atom is placed in a position such that all three atomic positions are collinear to

one another. The placement of the final atom in the linear molecule does not require generation

of random numbers due to zero degrees of freedom. Inside the code, variables that store the total

energy and the Boltzmann factors are updated at each iteration of the Widom insertion Monte

Carlo cycles. For the GPU thread configurations, 16×14=224 CUDA blocks are generated with a

block size of 64 in the CUDA kernel for the Widom insertions. Each of the CUDA threads conduct

1000 independent Widom Monte Carlo cycles, resulting in a total of≈ 14 million insertion moves.

Unless the CUDA occupancy is set to be too low, the block size and the number of blocks can be

changed easily without disrupting the code’s functionality or performance.

Rather than computing the adsorption properties for the entire structure, the code can also cal-

culate the local KH and the local ∆hi of the gas molecule within a specified subset region of our

simulation volume. This capability allows us to focus on different regions within the porous mate-
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rial to obtain a better understanding on the local adsorption properties of the regions of interest. In

the simulation code, the subset region is described by the union of a number of spheres at different

positions and various radii. In the local KH and ∆hi calculations, the Widom insertion algorithm

first checks to see whether the CO2 molecule is inside any of the spheres that describe the local

region and rejects any other insertion moves. Accordingly, in the limiting case where the spheres

cover the entire simulation volume, the problem simply reduces back to the original Widom inser-

tion algorithm. If the total volume of the spheres is much smaller than the volume of the unit cell,

most of the Widom insertion moves will be rejected as the probability of sampling the location

regions will be small. Having a large number of rejected moves can slow down the code signif-

icantly due to the warp divergence that occurs within the GPU threads and due to the high cost

of generating random numbers inside the GPU. However, because the local structural properties

analysis is something that we are interested in for only a small number of structures at this point,

we have yet to optimize this part of the code. In the results section, we elaborate on some of the

findings that come from sampling local regions of the zeolite structures.

2.4 Adsorption Isotherm Calculations

Grand canonical Monte Carlo simulations are utilized to compute adsorption isotherms. Given

the relatively small number of gas particles found within zeolite structures, there exists insuffi-

cient amount of work that can be efficiently parallelized via thousands of threads within the GPU.

In order to circumvent this issue, we propose a parallelization strategy in which multiple Monte

Carlo simulations are conducted in parallel inside the GPU.28 Specifically, the number of different

pressure values for the GCMC simulation is set to be fourteen, which is equal to the number of

streaming multiprocessors (SMs) found in the Tesla C2050 card and each SM is responsible for

conducting a single GCMC simulation. The threads within the CUDA blocks can work together

to parallelize the different pair-wise interaction contributions and a reduction kernel can be used

to sum up the contributions from each of the individual threads. The energy grids computed in the

previous steps are still utilized to remove the need to explicitly compute the gas-host interactions at
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each step of the Monte Carlo cycles. Furthermore, there can be an additional speedup by tabulat-

ing the Fourier components of the gas-gas Ewald summation interactions in another energy grid to

circumvent the need to iterate over all of the k vectors for each of the pair-wise interactions during

the Monte Carlo cycles.40 Similar to the gas-host energy grid, the linear interpolation functions are

utilized to estimate the gas-gas interaction. Within the periodic boundary conditions, the Fourier

components are only a function of the vector distance between two particles and thus we do not

lose much accuracy upon utilizing the tabular grid.

3 Results

In the simulation results, we initially focus our attention on the experimentally verified 188 IZA

zeolite structures and later extend our analysis to a much larger hypothetical zeolite database. All

of the numerical simulations were performed on the Dirac and the Carver clusters, located at the

National Energy Research Scientific Computing Center (NERSC). Dirac is a testbed GPU cluster

consisting of 48 nodes (44 Tesla C2050 Fermi GPU cards and 4 Tesla 1060 GPU cards). Each

node contains two Quad core Intel Nehalem 5530 2.4 GHz processors with 8 MB cache, 5.86

GT/sec QPI. The Fermi GPUs have 448 CUDA cores, a PCIe x16 Gen2 system interface, and 3

GB of GDDR5 memory —where a portion of the memory (12.5%) is dedicated to error correction

code (ECC) bits— yielding 2.625 GB of user available memory. According to the NVidia’s Tesla

C2050 specifications, double (single) precision floating point performance number peaks at 515

GFLOPS (1.03 TFLOPS) while the memory bandwidth is indicated to be 144 GB/sec. In order to

utilize as many GPUs as possible on the Dirac cluster, we use a simple MPI+CUDA multi-GPU

version of the code which supports static as well as dynamic scheduling of the material structures

onto the MPI tasks for processing. The CPU simulations were performed on the Carver cluster,

which consists of 800 Intel Nehalem 2.67 GHz quad-core processors with 24 GB DDR3 1333

MHz memory. Finally, we used the CUDA Toolkit 3.2, the CURAND Library for random number

generations, and gcc 4.4.2 compiler with full optimizations in all of our simulations
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3.1 Performance Analysis

3.1.1 Overall Performance

Figure 2 shows the timing results for the CH4 and the CO2 KH and ∆hi calculations for the IZA

structures. Given that the two quantities are computed simultaneously in the Widom insertion

routine, we focus only on the results for the KH in our performance analysis.
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Figure 2: Distribution of wall time for 188 IZA structures with methane and carbon dioxide gas
molecules. The energy grid size is set to be 0.1Å and the number of test rotations about the grid
points at 100, and roughly 10 million Widom insertion Monte Carlo moves. The total computa-
tional time is divided by the major routines that comprise the simulation code: (1) GPU energy
grid construction, (2) GPU test rotation, (3) CPU pocket blocking, and (4) GPU Widom insertion
moves.

The total computational wall time for all of the 188 IZA CH4 and CO2 simulations are mea-

sured to be 327.59 and 2016.28 seconds, respectively. Accordingly, the GPU code takes about

1.74 seconds (CH4) and 10.72 seconds (CO2) to compute a single value of KH and ∆hi, making the

CH4 calculations about 6.2× faster than the CO2 calculations. In general, the CO2 calculations re-

quire longer wall time largely due to: a) presence of charge in the carbon and the oxygen atoms of

the CO2 molecules, necessitating the expensive Ewald summation computations, and b) invoking

calls to the test rotation routine. Breaking down the performance of individual routines in further

detail, we see that the CH4 (CO2) energy grid construction routine takes 212.52 (813.15) seconds,
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making the CO2 calculations 3.83× more expensive due to the presence of Coulomb interaction

terms. The number of terms in the Fourier space calculations for the Ewald summation scales

with O(k3
max) with kmax representing the maximum number of k vectors. We can accelerate the

Fourier space calculations inside the GPU by nearly two-fold by replacing the sine and the cosine

terms with the sincos function for terms located in the inner-most loop of the nested k vector. In

the CO2 calculations, 47.9% of the wall time is spent in the test rotation routine as opposed to

0% for CH4 since the rotations are only required for multi-atom, linear and non-linear molecules.

Later on in the paper, we explore the performance impact of varying the number of test rotations

in this routine. The amount of time spent in pocket blocking for CH4 (CO2) is 97.11 (139.93)

seconds, making the performance for the different guest molecules comparable. The additional

Coulomb interaction term in the CO2 calculations often produce more complicated energy profiles

in the simulation box, which can increase the time spent in the flood fill step. Finally, the wall

time spent in the Widom insertions are proportionally small compared to the overall wall time in

both CH4 (12.51 seconds) and CO2 (87.91 seconds) calculations. This is not surprising, given that

computational intensity is low in the Widom insertion moves as the routine involves mostly read-

ing off pre-computed energy grid values from an array stored inside the GPU. The performance

numbers for the Widom insertions indicate that the wall time is 7.02× larger in the case of CO2

compared to CH4, which can be explained by the following. CO2 calculations require two random

and one non-random insertion, as well as interpolation of values from both the Lennard-Jones and

the Coulomb grid, to obtain an energy value for a single configuration. On the other hand, the

CH4 molecule entails one random insertion and one interpolation from the Lennard-Jones grid for

a single configuration. The number of Monte Carlo cycles for the Widom insertion routine can

be changed depending on the level of accuracy desired for the KH and the ∆hi results, which can

affect the proportional wall time spent in this routine as its wall time scales linearly with respect to

the number of cycles.
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3.1.2 Numerical Accuracy: Energy Grid Size

Next, we analyze the relationship between the energy grid size and code performance. In general,

the computational wall time for the KH and the ∆hi calculations can be reduced by increasing the

mesh size of the energy grid. In practice, the grid size should be chosen small enough to ensure

numerical accuracy of the KH and ∆hi calculations performed using the energy grid. In earlier work

on GPU waste recycling Monte Carlo,28 we have demonstrated that in the zeolite MFI structure

for CH4 molecules, utilizing the energy grid provides average energy values within 0.05% of the

ones obtained from direct Lennard-Jones potentials without the grid, providing good justification

of using the grid.
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Figure 3: CO2 KH values for five IZA blocking set structures for dm = 0.075, 0.10, 0.15, 0.20, 0.25,
and 0.30Å. The sudden jump in the Henry coefficient values for MAR and FAR at dm = 0.25 and
0.30Å signify the effect of erroneous results due to insufficient accuracy of the energy grid.

In Figure 3, the mean values of CO2 KH of five IZA structures (i.e. MAR, FAR, LTA, FAU, and

MTN) are plotted for different mesh sizes (dm = 0.075, 0.10, 0.15, 0.20, 0.25, and 0.30Å). These

five structures are part of twenty-one blocking set in IZA, which includes zeolite structures that

possess inaccessible regions for the CO2 molecules; this set comprises of about 11% (21/188) of

the entire IZA database. It is not necessary to plot the curves for all the structures in the blocking

set as these five are sufficient to show the general trends for all blocking structures with respect
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to changes in the grid size. As can be seen from Figure 3, the KH values overall decrease upon

increasing dm. Most of the KH contributions in the porous materials come from small regions with

relatively low energy values due to the exponential Boltzmann term found in the formulation of

the Henry coefficient in 1. Because we use linear interpolation functions, it is not possible for the

interpolated values to have energy values lower than the sampled grid points (as opposed to another

form of interpolating functions such as cubic splines where it is possible for interpolated values

to be lower). Thus, for smaller dm, the likelihood of sampling lower energy points increases due

to general positive concavity of the energy profile around the local energy minimum regions. The

choice of the linear interpolation functions was largely made to reduce the time spent in reading

and interpolating the energy grid values. As can be seen from Figure 3, for small grid size, the KH

values do not change much as the percentage difference between KH at dm = 0.075Å and at 0.1Å

is less than 1 percent. For grid sizes smaller than dm = 0.075Å, many of the IZA structures suffer

from GPU memory allocation errors as the device is bounded by the 3GB DRAM. For zeolites

MAR and FAR, the mesh size makes a significant difference as at lower grid resolutions of dm =

0.25Å, these structures are errorneously considered to be entirely inaccessible, reducing their KH
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values to nearly zero. The sudden increase in the deviation for these structures demonstrates the

importance of setting dm sufficiently small to avoid inaccurate results. For experimentally known

structures, the simulation KH values can be compared to values derived from the experimental

adsorption isotherm data at very low pressure values.

3.1.3 Performance: Energy Grid Size

Figure 4 summarizes the computational wall times for twenty-one CO2 KH and ∆hi calculations

for different values of dm. As can be seen from Figure 4, the total wall time, Ttot decreases sig-

nificantly upon changing the grid size. At dm = 0.10, 0.15, 0.20, 0.25, and 0.30Å, Ttot = 396.82,

117.93, 55.37, 32.67, and 22.4 seconds, respectively. There is 7.17× wall time improvement upon

increasing dm by two-fold going from 0.10Å to 0.20Å, which is a reasonable number given that

the number of grid points reduces by eight-fold, affecting the energy grid, test rotation, and the

pocket blocking routine. For the most part, the wall time for Widom insertion routine is indepen-

dent of the grid size, which is reflected in Figure 5, which shows the proportional wall time spent

in each of the routines for different dm. According to Figure 5, the proportional wall time spent

in Widom insertion routine increases for larger dm while its absolute time remains relatively the
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same (11.4, 10.7, 9.59, 8.44, and 7.55 seconds for dm = 0.10, 0.15, 0.20, 0.25, and 0.30Å). From

Figure 5, it can also be seen that the proportional wall time for the test rotation and the pocket

blocking reduces much more significantly (42.4× and 39.2×, respectively) going from dm = 0.10

to 0.30Å compared to the energy grid routine (22.3×) despite the same reduction in the number

of energy grid points in all three routines. It turns out that in the energy grid construction routine,

there exists separate computational terms within the Ewald summation that do not scale with the

number of grid points and, therefore, the speedup improvement is smaller here compared to the

other two routines. Not shown in this work are the performance results for CH4, where similar

speedup numbers are obtained by increasing dm. However, given that the test rotation routine is

not called in the CH4 calculations, the proportional time spent in the Widom insertions is far larger

for CH4 compared to the CO2 calculations for all dm but especially at large dm.

3.1.4 Performance: Number of Test Rotations Nrot

Next, we analyze the effect of changing the number of test rotations, Nrot. As mentioned earlier,

point particles such as CH4 do not require rotation moves and thus are omitted in this analysis. We

separately analyze the CO2 KH performance for the 21-member blocking set and the remaining

167-member non-blocking set (i.e., zeolites in which all regions are inaccessible) for IZA struc-

tures at dm = 0.10Å. Figure 6a and 6b show the computational wall times as a function of Nrot for

the two sets, respectively. In both sets, the qualitative behavior of the curves remains the same:

the wall time starts high at small Nrot, decreases for larger Nrot until a minimum wall time (Ttot =

328.96 seconds for blocking set and Ttot = 1270.43 seconds for non-blocking set) is reached, and

then increases monotonically for even larger Nrot. The minimum wall times, located at Nrot = 40

in both sets, constitutes 17.1% and 26.6% reduction from the default value of Nrot = 100 rotations.

The general behavior of the two curves can be explained by observing the changes in the two rou-

tines affected by the number of test rotations: a) pocket blocking and b) test rotation routines. For

small Nrot – due to the small number of terms that inaccurately captures the true total energy land-

scape – the energy profile becomes less smooth and results in more disconnected regions inside the
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simulation box and more pockets. Accordingly, the pocket blocking routine spends more time in

the flood fill algorithm and blocking pockets, resulting in longer wall time for the routine at small

Nrot. For larger Nrot, the energy profile becomes smoother and less time is spent in the flood fill al-

gorithm. Accordingly, the overall pocket blocking routine decreases monotonically with respect to

Nrot. By contrast, the wall time for test rotation predictably scales linearly with respect to Nrot, and

the different behaviors of these two routines contribute to the overall shape of the total wall time

curves depicted in 6a and 6b. Additionally, there are small differences between the performance of

the blocking and that of the non-blocking sets. In general, the proportional wall time spent in find-

ing and detecting pockets is smaller in the non-blocking set compared to the blocking set; while

the flood fill step is performed in both cases, only the blocking set is found to have regions which

require blocking. Subsequently, one observes a steeper descent in the wall time curve at smaller

numbers of test rotations in 6a compared to 6b as pocket blocking contributes relatively little of

the proportional wall time for the non-blocking set.

At the optimal value of Nrot = 40, the KH results agree very well (within 0.1%) from results

obtained at Nrot = 100 for both blocking and non-blocking sets that have relatively high KH. For ze-

olite structures that can be characterized by a very low KH values (i.e. KH < 1e-18), the relative KH

difference between Nrot = 40 and Nrot = 100 becomes large, but the difference here is uninterest-

ing and ultimately meaningless in practice as very small values of KH all indicate poor adsorption

properties of CO2 regardless of the exact number. Thus, there can be a performance gain by setting

Nrot = 40 from the default value of 100 without having to sacrifice meaningful accuracy in the KH

results.

3.1.5 Performance: Pocket Blocking

Next, we discuss the performance details of the pocket blocking routine as a function of the number

of CPU cores. Because the pocket blocking is the only routine of this algorithm that takes place

entirely on the CPU, we utilize Pthreads to generate multiple CPU threads that work in parallel to

accelerate the routine. Based on the profiling reported in Ref,39 larger numbers of CPU threads
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Figure 6: Computational wall time as a function of number of test rotations, Nrot, for the CO2 KH
calculations for the (a) 21 IZA blocking set and (b) 167 IZA non-blocking set. The optimal number
of test rotations that minimizes wall time occurs at Nrot = 40.

are found to be generally advantageous for larger or more complex zeolite structures, but there

exists performance degradation in smaller or more simplistic structures. The relationship between

number of CPU threads and the pocket blocking wall time is illustrated in Figure 7. As expected,

the wall time decreases monotonically with respect to the number of CPU threads for both the

CH4 and the CO2 simulations and saturation point is reached near 4-8 CPU threads. For CO2

simulations, the performance scales nearly linearly going from 1 to 2 CPU threads as a speedup of

1.96× is observed (in CH4, speedup is 1.53×).

3.1.6 Performance: GPU vs. CPU

Finally, we assess performance differences between the CPU and the GPU. For the CH4 energy grid

routine, we observe speedups of around 50× compared to an optimized single CPU core simulation

without SSE from simulation results from the Carver cluster at NERSC. The number is reasonable

given that the energy grid construction is compute-bound due to its high compute intensity and

most of the memory transactions are handled inside the fast constant memory of the GPU. We have

not written a CPU version of the code for the CO2 energy grid routine, but we expect the speedup

numbers to be similar given the similar compute flop intensity and similar memory references
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Figure 7: CH4 and CO2 pocket block routine wall time as a function of number of CPU threads
for the 188 IZA zeolite structures. The performance gain begins to saturate going from 4 to 8 CPU
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and coalescing patterns. Moreover, the inclusion of fast, pocket blocking routine accelerates the

detection of inaccessible regions compared to slow methods based on molecular dynamics.

3.2 Characterization of Zeolites

Utilizing the total energy grid, we can create another grid (i.e. local KH grid) that contains the

Boltzmann factors at each of the points. The local KH grid can be used to attain information about

the locations likely to be occupied by the gas molecules, providing another means to characterize

the structures in the post-processing stage after the simulation. In Figure 8, we include an example

illustration that displays the effect of pocket blocking in the zeolite LTA structure. A heat mapping

represents the local CO2 KH regions, with warmer colors denoting larger KH contributions, and as

can be seen, the distribution of the local KH changes upon enabling/disabling the pocket blocking

routine. Specifically in the case of LTA, the corner regions in the unit cell become inaccessible

as CO2 cannot enter into this region within a reasonable experimental timescale. Accordingly,

the CO2 KH values inside LTA with or without pocket blocking are 9.59×10−6 and 6.85×10−6

mol/kg/Pa as the KH value decrease upon setting the energy grid values inside the inaccessible re-

gion to be very high. In general, structures that contain inaccessible regions always show reduction

in KH values as proper inclusion of pocket blocking raises the energy values at these regions. We
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illustrate by this example the importance of pocket blocking in avoiding the overestimation of the

level of adsorption in a given porous material.

(a) LTA pore landscape without blocking (b) LTA pore landscape with blocking

Figure 8: Snapshots of LTA zeolite with pore landscape (a) without blocking and (b) with blocking.
The silicon and oxygen atoms of the framework are shown in tan and red respectively. The local
Henry coefficient contributions are shown as a heat map; warmer colors indicate higher likelihood
of the guest CO2 molecule occupying these positions. The inaccessible pocket region is shown to
be fully excluded by the pink spheres, located on the eight corners of the unit cell. Upon enabling
the pocket blocking routine, the energy grid points in the blocking region are set to very high
energy and the CO2 molecules are forced away from these regions.

Up until now, the analysis focused on the experimentally verified IZA structures, which com-

prise of a very small subset of the entire database of the zeolite structures. The algorithm explained

earlier can be utilized unchanged to easily extend our simulation code to process 135,222 hypo-

thetical zeolites in the database. Figure 9 plots the histogram of both the CO2 and CH4 KH values

for all of the zeolite structures. Given that zeolites are seen as one of the ideal candidates for

carbon capture, it is not surprising that the KH values for CO2 are in general higher than that of

CH4. The broader distributions of the CO2 KH also indicates that the range of possible structures

with different CO2 adsorption properties remains large compared to CH4. Extrapolating from the
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simulation times obtained from the IZA structures, we can obtain the CO2 KH values of the entire

hypothetical zeolite structures in about 50 hours of total wall time, utilizing 8 Tesla C2050 GPUs

in the Dirac cluster. At the end of the KH calculations, selected structures from a large database

that are deemed to have shown good adsorption properties can be analyzed in-depth by utilizing

the GPU grand canonical Monte Carlo simulations whose algorithm is described in 2.4. The pre-

dicted adsorption properties obtained from the simulation code can provide valuable insights to

experimentalists interested in synthesizing materials inside a large porous materials database.
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Figure 9: Distribution of CO2 and CH4 Henry coefficient values for 135,222 hypothetical zeolite
structures. In general, the CO2 KH values are larger than the CH4 KH, indicating that zeolites have
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4 Summary and Future Work

We have developed a GPU-based simulation code that can characterize and pre-screen a large

database of porous materials. Our code has the capability to quickly compute the Henry coeffi-

cient and the heats of adsorption values for many different gas molecules immersed inside a porous

material. We can further analyze individual structures in the simulations by visualizing local Henry

coefficient values to determine local adsorption property of a given material. Although the simu-

lation results presented in this work pertain to zeolites, the code can be easily extended to process

other classes of microporous materials. For future work, we plan to analyze the effect of adding

25



cations to zeolites and to characterize a large database of other porous materials such as MOF and

ZIF structures.
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