171 research outputs found

    Cerebellar Involvement in Clumsiness and Other Developmental Disorders

    Get PDF
    Cerebellar abnormalities have been linked to a number of developmental disorders. Much evidence is based on the analysis of highresolution MRI scans. Imaging and behavioral studies have led researchers to consider functional contributions of the cerebellum beyond that associated with motor control. I review this literature, providing an analysis of different ways to consider the relation between cerebellar abnormalities and developmental disorders. Interestingly, although clumsiness is a problem of coordination, the contribution of cerebellar dysfunction to this developmental problem has received little attention. Select studies indicate that some clumsy children have difficulties on tasks requiring precise timing, similar to that observed in adult patients with cerebellar lesions. I suggest that the underlying neural bases of clumsiness are heterogeneous, with cerebellar dysfunction likely a major contributor for a subpopulation of such children

    Cerebellar Pathology Does Not Impair Performance on Identification or Categorization Tasks

    Get PDF
    In comparison to the basal ganglia, prefrontal cortex, and medial temporal lobes, the cerebellum has been absent from recent research on the neural substrates of categorization and identification, two prominent tasks in the learning and memory literature. To investigate the contribution of the cerebellum to these tasks, we tested patients with cerebellar pathology (seven with bilateral degeneration, six with unilateral lesions, and two with midline damage) on rule-based and information-integration categorization tasks and an identification task. In rule-based tasks, it is assumed that participants learn the categories through an explicit reasoning process. In information-integration tasks, optimal performance requires the integration of information from multiple stimulus dimensions, and participants are typically unaware of the decision strategy. The identification task, in contrast, required participants to learn arbitrary, color-word associations. The cerebellar patients performed similar to matched controls on all three tasks and performance did not vary with the extent of cerebellar pathology. Although the interpretation of these null results requires caution, these data contribute to the current debate on cerebellar contributions to cognition by providing boundary conditions on understanding the neural substrates of categorization and identification, and help define the functional domain of the cerebellum in learning and memory

    Effect of Reinforcement History on Hand Choice in an Unconstrained Reaching Task

    Get PDF
    Choosing which hand to use for an action is one of the most frequent decisions people make in everyday behavior. We developed a simple reaching task in which we vary the lateral position of a target and the participant is free to reach to it with either the right or left hand. While people exhibit a strong preference to use the hand ipsilateral to the target, there is a region of uncertainty within which hand choice varies across trials. We manipulated the reinforcement rates for the two hands, either by increasing the likelihood that a reach with the non-dominant hand would successfully intersect the target or decreasing the likelihood that a reach with the dominant hand would be successful. While participants had minimal awareness of these manipulations, we observed an increase in the use of the non-dominant hand for targets presented in the region of uncertainty. We modeled the shift in hand use using a Q-learning model of reinforcement learning. The results provided a good fit of the data and indicate that the effects of increasing and decreasing the rate of positive reinforcement are additive. These experiments emphasize the role of decision processes for effector selection, and may point to a novel approach for physical rehabilitation based on intrinsic reinforcement

    How Does Language Change Perception: A Cautionary Note

    Get PDF
    The relationship of language, perception, and action has been the focus of recent studies exploring the representation of conceptual knowledge. A substantial literature has emerged, providing ample demonstrations of the intimate relationship between language and perception. The appropriate characterization of these interactions remains an important challenge. Recent evidence involving visual search tasks has led to the hypothesis that top-down input from linguistic representations may sharpen visual feature detectors, suggesting a direct influence of language on early visual perception. We present two experiments to explore this hypothesis. Experiment 1 demonstrates that the benefits of linguistic priming in visual search may arise from a reduction in the demands on working memory. Experiment 2 presents a situation in which visual search performance is disrupted by the automatic activation of irrelevant linguistic representations, a result consistent with the idea that linguistic and sensory representations interact at a late, response-selection stage of processing. These results raise a cautionary note: While language can influence performance on a visual search, the influence need not arise from a change in perception per se

    Encoding of sensory prediction errors in the human cerebellum.

    Get PDF
    A central tenet of motor neuroscience is that the cerebellum learns from sensory prediction errors. Surprisingly, neuroimaging studies have not revealed definitive signatures of error processing in the cerebellum. Furthermore, neurophysiologic studies suggest an asymmetry, such that the cerebellum may encode errors arising from unexpected sensory events, but not errors reflecting the omission of expected stimuli. We conducted an imaging study to compare the cerebellar response to these two types of errors. Participants made fast out-and-back reaching movements, aiming either for an object that delivered a force pulse if intersected or for a gap between two objects, either of which delivered a force pulse if intersected. Errors (missing the target) could therefore be signaled either through the presence or absence of a force pulse. In an initial analysis, the cerebellar BOLD response was smaller on trials with errors compared with trials without errors. However, we also observed an error-related decrease in heart rate. After correcting for variation in heart rate, increased activation during error trials was observed in the hand area of lobules V and VI. This effect was similar for the two error types. The results provide evidence for the encoding of errors resulting from either the unexpected presence or unexpected absence of sensory stimulation in the human cerebellum

    Competition between movement plans increases motor variability: evidence of a shared resource for movement planning.

    Get PDF
    Do movement plans, like representations in working memory, share a limited pool of resources? If so, the precision with which each individual movement plan is specified should decrease as the total number of movement plans increases. To explore this, human participants made speeded reaching movements toward visual targets. We examined if preparing one movement resulted in less variability than preparing two movements. The number of planned movements was manipulated in a delayed response cueing procedure that limited planning to a single target (experiment 1) or hand (experiment 2) or required planning of movements toward two targets (or with two hands). For both experiments, initial movement direction variability was higher in the two-plan condition than in the one-plan condition, demonstrating a cost associated with planning multiple movements, consistent with the limited resource hypothesis. In experiment 3, we showed that the advantage in initial variability of preparing a single movement was present only when the trajectory could be fully specified. This indicates that the difference in variability between one and two plans reflects the specification of full motor plans, not a general preparedness to move. The precision cost related to concurrent plans represents a novel constraint on motor preparation, indicating that multiple movements cannot be planned independently, even if they involve different limbs.This research was supported by the Wellcome Trust and the Van Coeverden Adriani Stichting.This is the author accepted manuscript. The final version is available from the American Physiological Society via http://dx.doi.org/10.1152/jn.00113.201

    Predicting brain activation maps for arbitrary tasks with cognitive encoding models

    Get PDF
    A deep understanding of the neural architecture of mental function should enable the accurate prediction of a specific pattern of brain activity for any psychological task, based only on the cognitive functions known to be engaged by that task. Encoding models (EMs), which predict neural responses from known features (e.g., stimulus properties), have succeeded in circumscribed domains (e.g., visual neuroscience), but implementing domain-general EMs that predict brain-wide activity for arbitrary tasks has been limited mainly by availability of datasets that 1) sufficiently span a large space of psychological functions, and 2) are sufficiently annotated with such functions to allow robust EM specification. We examine the use of EMs based on a formal specification of psychological function, to predict cortical activation patterns across a broad range of tasks. We utilized the Multi-Domain Task Battery, a dataset in which 24 subjects completed 32 ten-minute fMRI scans, switching tasks every 35 s and engaging in 44 total conditions of diverse psychological manipulations. Conditions were annotated by a group of experts using the Cognitive Atlas ontology to identify putatively engaged functions, and region-wise cognitive EMs (CEMs) were fit, for individual subjects, on neocortical responses. We found that CEMs predicted cortical activation maps of held-out tasks with high accuracy, outperforming a permutation-based null model while approaching the noise ceiling of the data, without being driven solely by either cognitive or perceptual-motor features. Hierarchical clustering on the similarity structure of CEM generalization errors revealed relationships amongst psychological functions. Spatial distributions of feature importances systematically overlapped with large-scale resting-state functional networks (RSNs), supporting the hypothesis of functional specialization within RSNs while grounding their function in an interpretable data-driven manner. Our implementation and validation of CEMs provides a proof of principle for the utility of formal ontologies in cognitive neuroscience and motivates the use of CEMs in the further testing of cognitive theories

    Time on your hands: Perceived duration of sensory events is biased toward concurrent actions

    Get PDF
    Perceptual systems must rapidly generate accurate representations of the world from sensory inputs that are corrupted by internal and external noise. We can typically obtain more veridical representations by integrating information from multiple channels, but this integration can lead to biases when inputs are, in fact, not from the same source. Although a considerable amount is known about how different sources of information are combined to influence what we perceive, it is not known whether temporal features are combined. It is vital to address this question given the divergent predictions made by different models of cue combination and time perception concerning the plausibility of cross-modal temporal integration, and the implications that such integration would have for research programs in action control and social cognition. Here we present four experiments investigating the influence of movement duration on the perceived duration of an auditory tone. Participants either explicitly (Experiments 1–2) or implicitly (Experiments 3–4) produced hand movements of shorter or longer durations, while judging the duration of a concurrently presented tone (500–950 ms in duration). Across all experiments, judgments of tone duration were attracted toward the duration of executed movements (i.e., tones were perceived to be longer when executing a movement of longer duration). Our results demonstrate that temporal informa-tion associated with movement biases perceived auditory duration, placing important constraints on theories modeling cue integration for state estimation, as well as models of time perception, action control and social cognition

    Consensus paper:Decoding the Contributions of the Cerebellum as a Time Machine. From Neurons to Clinical Applications

    Get PDF
    Time perception is an essential element of conscious and subconscious experience, coordinating our perception and interaction with the surrounding environment. In recent years, major technological advances in the field of neuroscience have helped foster new insights into the processing of temporal information, including extending our knowledge of the role of the cerebellum as one of the key nodes in the brain for this function. This consensus paper provides a state-of-the-art picture from the experts in the field of the cerebellar research on a variety of crucial issues related to temporal processing, drawing on recent anatomical, neurophysiological, behavioral, and clinical research. The cerebellar granular layer appears especially well-suited for timing operations required to confer millisecond precision for cerebellar computations. This may be most evident in the manner the cerebellum controls the duration of the timing of agonist-antagonist EMG bursts associated with fast goal-directed voluntary movements. In concert with adaptive processes, interactions within the cerebellar cortex are sufficient to support sub-second timing. However, supra-second timing seems to require cortical and basal ganglia networks, perhaps operating in concert with cerebellum. Additionally, sensory information such as an unexpected stimulus can be forwarded to the cerebellum via the climbing fiber system, providing a temporally constrained mechanism to adjust ongoing behavior and modify future processing. Patients with cerebellar disorders exhibit impairments on a range of tasks that require precise timing, and recent evidence suggest that timing problems observed in other neurological conditions such as Parkinson\u2019s disease, essential tremor, and dystonia may reflect disrupted interactions between the basal ganglia and cerebellum. The complex concepts emerging from this consensus paper should provide a foundation for further discussion, helping identify basic research questions required to understand how the brain represents and utilizes time, as well as delineating ways in which this knowledge can help improve the lives of those with neurological conditions that disrupt this most elemental sense. The panel of experts agrees that timing control in the brain is a complex concept in whom cerebellar circuitry is deeply involved. The concept of a timing machine has now expanded to clinical disorders

    Consensus Paper: The Role of the Cerebellum in Perceptual Processes

    Get PDF
    Various lines of evidence accumulated over the past 30 years indicate that the cerebellum, long recognized as essential for motor control, also has considerable influence on perceptual processes. In this paper, we bring together experts from psychology and neuroscience, with the aim of providing a succinct but comprehensive overview of key findings related to the involvement of the cerebellum in sensory perception. The contributions cover such topics as anatomical and functional connectivity, evolutionary and comparative perspectives, visual and auditory processing, biological motion perception, nociception, self-motion, timing, predictive processing, and perceptual sequencing. While no single explanation has yet emerged concerning the role of the cerebellum in perceptual processes, this consensus paper summarizes the impressive empirical evidence on this problem and highlights diversities as well as commonalities between existing hypotheses. In addition to work with healthy individuals and patients with cerebellar disorders, it is also apparent that several neurological conditions in which perceptual disturbances occur, including autism and schizophrenia, are associated with cerebellar pathology. A better understanding of the involvement of the cerebellum in perceptual processes will thus likely be important for identifying and treating perceptual deficits that may at present go unnoticed and untreated. This paper provides a useful framework for further debate and empirical investigations into the influence of the cerebellum on sensory perception
    • 

    corecore