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Behavioral/Systems/Cognitive

Encoding of Sensory Prediction Errors in the Human
Cerebellum

John Schlerf,1,2 Richard B. Ivry,2,3 and Jörn Diedrichsen4,5

1Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, 2Helen Wills Neuroscience Institute
and 3Department of Psychology, University of California at Berkeley, Berkeley, California 94720, 4Institute of Cognitive Neuroscience, University College
London, London WC1N 3AR, United Kingdom, and 5Wolfson Center for Clinical and Cognitive Neuroscience, Bangor University, Gwynedd LL57 2AS,
United Kingdom

A central tenet of motor neuroscience is that the cerebellum learns from sensory prediction errors. Surprisingly, neuroimaging studies
have not revealed definitive signatures of error processing in the cerebellum. Furthermore, neurophysiologic studies suggest an asym-
metry, such that the cerebellum may encode errors arising from unexpected sensory events, but not errors reflecting the omission of
expected stimuli. We conducted an imaging study to compare the cerebellar response to these two types of errors. Participants made fast
out-and-back reaching movements, aiming either for an object that delivered a force pulse if intersected or for a gap between two objects,
either of which delivered a force pulse if intersected. Errors (missing the target) could therefore be signaled either through the presence
or absence of a force pulse. In an initial analysis, the cerebellar BOLD response was smaller on trials with errors compared with trials
without errors. However, we also observed an error-related decrease in heart rate. After correcting for variation in heart rate, increased
activation during error trials was observed in the hand area of lobules V and VI. This effect was similar for the two error types. The results
provide evidence for the encoding of errors resulting from either the unexpected presence or unexpected absence of sensory stimulation
in the human cerebellum.

Introduction
The cerebellum is thought to contribute to sensorimotor control
by implementing a forward model that predicts sensory input
(Wolpert et al., 1998). This internal model, and the consequent
motor output, is fine-tuned by error signals reflecting the differ-
ence between expected and observed input (Tseng et al., 2007). In
agreement with this hypothesis, cerebellar damage leads to deficits in
sensorimotor adaptation tasks (Martin et al., 1996; Maschke et al.,
2004; Smith and Shadmehr, 2005; Morton and Bastian, 2006; Tseng
et al., 2007; Golla et al., 2008).

Neuroimaging has provided inconsistent evidence concern-
ing the cerebellar representation of prediction errors. Studies
have shown a higher hemodynamic response in the cerebellum
early during learning, when errors are prevalent (Imamizu et al.,
2000). However, the interpretation of this signal is problematic,
since there is also an increase in movement during this epoch to
correct these errors. Studies designed to explicitly equate kine-
matics (Desmurget et al., 1998, 2000; Krakauer et al., 2004;
Diedrichsen et al., 2005a; Schmitz et al., 2005) failed to observe
error-related activation within the cerebellum. In the present

study, we revisit this issue, comparing trials in which movements
with and without sensory prediction errors are matched.

There are at least two schemes by which the cerebellum may
encode sensory prediction errors. The cerebellum may process
errors conveyed as unexpected sensory events, for example, acci-
dentally brushing one’s arm against the tabletop when reaching
for a glass. Alternatively, the cerebellum may represent errors
more generally, signaling both the occurrence of unexpected
stimuli and the omission of expected stimuli (e.g., missing the
glass entirely). In support of a restrictive scheme, climbing
fibers signal unexpected air puffs during eyeblink condition-
ing (McCormick et al., 1985; Mauk et al., 1986), but not the
unexpected absence of the puff during extinction (McCormick et
al., 1985). Similarly, in cats trained to make reaching movements,
olivary responses were observed when an unexpected obstacle
was encountered during the reach, but not when the cat missed
the target (Horn et al., 2004). However, another notable study
observed an increase in complex spike activity when cats missed
an expected rung on a ladder, indicating that the cerebellum is
capable of encoding the omission of expected stimulation (An-
dersson and Armstrong, 1987).

We explore this issue directly, examining the hemodynamic
response in the cerebellum during reaching movements. By vary-
ing participants’ expectations, prediction errors could manifest
as either the presence of an unexpected force pulse or the absence
of an expected pulse. We asked whether the cerebellar blood ox-
ygenation level-dependent (BOLD) signal, which reflects a com-
bination of mossy and climbing fiber inputs to the cerebellum
(Diedrichsen et al., 2010), increases in response to sensory pre-
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diction errors in general, or only to unexpected sensory
stimulation.

An important, but often ignored, concern for the study of
prediction errors with fMRI is the influence of heart rate on the
BOLD signal. Because unexpected events and negative feedback
may influence heart rate (Jennings and van der Molen, 2002;
Crone et al., 2004), we incorporated cardiac measurements as a
covariate in the analyses.

Materials and Methods
Participants. Ten adults (mean age, 23 years; SD, 4 years; 3 females) from
the student population at Bangor University, with no history of neuro-
logical injury or disorders, served as participants. An 11th participant was
excluded from the study after a postsession debriefing in which he indicated
difficulty in resolving the target locations without corrective lenses. Partici-
pants were paid for their time. The study was approved by the institutional
review board of the School of Psychology, Bangor University.

Apparatus. Participants lay supine in the fMRI scanner with the head
stabilized by a custom-fit bite bar. They grasped the handle of a nonmagnetic
two-joint robotic manipulandum (http://fmrirobot.org) (Diedrichsen et
al., 2005a), which was linked to a computer located in a control room.
This device allows for low-friction, two-dimensional movements within
the horizontal plane. Linear optical encoders on the elbow and shoulder
joint provided position information with endpoint accuracy better than
0.01 mm. Forces were applied via air pistons supplied with 100 psi pres-
sure from a compressor. The pistons generate a target force with a delay
of �60 ms following a step input. A filter panel in the wall separating the
scanning and control rooms prevented leakage of radio frequency noise.
Position and velocity of the hand and the generated forces were recorded
at 200 Hz. Visual stimuli, including targets and feedback of hand posi-
tion, were projected onto a back screen, which was viewed by the partic-
ipants through a mirror.

Behavioral task. On each trial, an arc composed of a series of circles was
presented (Fig. 1). One circle, the target, differed in color from the re-
maining distractor circles. To assist in maintaining attention during the

task, we varied the location of the target on some trials. The target was
either the central circle or the circle to the immediate left or right (�7°).
Participants were required to make a fast, out-and-back reaching move-
ment, attempting to intersect the target circle. The target could be either
red or white, and the distractors were always the opposite color. Impor-
tantly, if the intersected circle was red, the robot delivered a short force
pulse, whether this circle was the target or the distractor. If the intersected
circle was white, there was no force pulse.

Using a balanced 2 � 2 design, we separately manipulated the partic-
ipant’s expectation of the sensory outcome and the actual sensory out-
come (Fig. 1). On trials in which the target was white, the participant
should have expected not to receive a force pulse. As such, the absence of
the force pulse indicated a successful reach whereas the presence of the
force pulse signaled a prediction error. In contrast, on trials in which the
target was red, the participant should have anticipated the force pulse.
The presence of the force pulse now indicated a successful reach whereas
the absence of the pulse signaled a prediction error. In this manner, the
prediction error was either associated with the presence of an unexpected
sensory event or the absence of an expected sensory event.

To initiate a trial, the participant moved the handle to the center of the
workspace. The center was adjusted for each participant before scanning
to ensure that the movements could be performed comfortably without
contacting the bore of the scanner. Starting position was indicated by the
color of a crosshair pattern on the screen. The crosshair was blue if the
cursor was within a 2 cm diameter boundary region and yellow if
the cursor was outside this starting region. The array of 21 colored
circles (1 cm diameter) was then presented, arranged in a semicircle
with an 8 cm radius.

Participants initiated the movement after the onset of the array, with
the instructions emphasizing accuracy and consistent movement kine-
matics (see below), rather than reaction time. Whenever the cursor in-
tersected a red circle, a brief force pulse was applied to the hand. This
force pulse was directed against the direction of movement, decelerating
the reaching movement. The pulse consisted of a half-sinusoid with an
amplitude of 1.5 N and a duration (half-period) of 60 ms. No pulse was
delivered when the cursor intersected a white circle, or when the hand
moved through the array on the return path. To increase the incidence of
errors, the cursor was randomly rotated by �7°, the angular width of a
single target, on 33% of the trials. The rotation was centered around the
starting position and could be to the left or the right. Participants were
informed that a small rotation would be applied randomly.

In half of the trials, the cursor was visible, and a dot was presented on
the display at the point of the farthest extent of the movement, providing
direction- and amplitude-based visual feedback. Corrections based on
on-line visual feedback were not possible given the short duration of the
movements. In the other half of the trials, no visual feedback was pre-
sented. Visual feedback and no-feedback trials were interspersed, allow-
ing us to determine the relative contributions of somatosensory and
visual error signals. To encourage successful performance, a counter in-
cremented by one point when the hand returned to the starting region if
the cursor had passed through the target circle. This counter was visible
on all trials.

Participants completed a training session 1–2 d before the scanning
session. This session was conducted in a mock scanner with a setup
identical to the real scanning environment. The training session famil-
iarized the participants with the task and was used to train them to
complete the movements with a consistent movement speed and ampli-
tude (based on verbal feedback from the experimenter). During training,
participants completed at least four blocks of 80 trials each.

In the fMRI session, a target was presented every 4 s. The target color,
and thus the expected outcome, was held constant for blocks of 15 trials,
followed by 10 seconds of rest. During each scanning run (300 s), partic-
ipants performed two blocks with each of the two expectation conditions,
with the order counterbalanced across participants. Each participant
completed eight runs, with the exception of one subject who was unable
to complete the eighth run. One subject completed a ninth run to make
up for a technical error with the apparatus.

Participants were instructed to maintain fixation at the center location
and not saccade to the target. Eye movements were monitored during the

Figure 1. Experimental task. The stimulus display consisted of 21 dots (13 shown here), with
one dot—the target—presented in a unique color. Holding a nonmagnetic robotic arm, par-
ticipants made a fast out-and-back movement from a yellow starting circle, attempting to
intersect the target. Solid lines indicate arm trajectories. A resistive force pulse was provided to
the hand as soon as it intersected a red dot on the outward movement. No pulse was delivered
when the hand intersected a white dot. This created a 2 � 2 design, where participants either
aimed for a red dot and expected a force pulse (left column), or aimed for a white dot and
expected to not receive a force pulse (right column). Errors can be signaled by the presence of an
unexpected stimulus (intersecting a red dot while aiming for a white target; top right) or the
absence of an expected stimulus (intersecting a white dot when aiming for a red target; bottom
left). Visual feedback of hand position was present on half of the trials. We increased the error
rates by adding a�7° rotation to hand position (and, when present, visual feedback) on 33% of
the trials.
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fMRI session, and participants were informed at the end of each run if
they made any eye movements. Very few saccades were detected during
the task.

Scan acquisition. Data were acquired on a 3 T Philips Intera system
(Philips Medical Systems). For functional runs, we used an echo planar
imaging sequence with sensitivity-encoded MRI (Pruessmann et al.,
1999) and a sensitivity encoding factor of 2. Twenty-four oblique slices
(1.8 mm thickness; 0.3 mm gap; repetition time, 2 s), oriented �45
degrees from horizontal, were selected to optimize coverage of the cere-
bellum and brainstem. Each slice was acquired as a 96 � 96 matrix (field
of view was 24.0 � 24.0 cm) with a voxel size of 1.88 � 1.88 � 2.1 mm.
Each run contained 150 volumes. For anatomical localization, a high-
resolution T1-weighted structural image was acquired with 0.67 �
0.67 � 0.7 mm resolution using a magnetization-prepared rapid-
acquisition gradient echo sequence.

Because physiological variables are known to influence the BOLD re-
sponse (Glover et al., 2000; Shmueli et al., 2007; Birn et al., 2008; Chang
et al., 2009), we recorded cardiac and respiration rate during the func-
tional runs. Heart rate was recorded at 500 Hz using a four-lead EKG
system integrated with the Phillips scanner. Respiration was recorded at
100 Hz using a pneumatic compression belt.

Imaging analysis. Functional images were converted to four-dimensional
Nifti files (http://www.cabiatl.com/mricro/mricron/dcm2nii.html) and an-
alyzed using SPM5 (http://www.fil.ion.ucl.ac.uk/spm/software/spm5). Im-
ages were corrected for slice timing, realigned to correct for residual head
movement (using rigid-body realignment), and coregistered to the anatom-
ical image. Following this preprocessing, unsmoothed images were analyzed
in native space using a general linear model.

Event-related regressors were created for eight trial types (two expec-
tation conditions � two outcomes � two visual feedback conditions) as
delta functions, time-locked to target onset. These functions were con-
volved with the canonical hemodynamic response function. While the
target location varied slightly across trials, pilot analysis suggested that
this manipulation did not affect BOLD data, thus we did not include this
effect in our model. Heart and respiration rate were estimated using the
Physiological Log Extraction for Modeling toolbox (http://sites.google.
com/site/phlemtoolbox/). The heart rate time series was computed fol-
lowing the methods outlined in Chang et al. (2009). After marking the
time of the peak of the QRS waveform, we identified all heartbeats within
a 6 s window, centered at the time of a single volume in the fMRI time
series. The average interbeat interval was computed, inverted, and mul-
tiplied by 60 to compute beats per minute. This time series was then
shifted by 0 –11 TRs. The resulting 12 regressors were used directly as
covariates.

For the group analysis, we first normalized the anatomical images to a
high-resolution cerebellar template [Spatially Unbiased Infratentorial
Template (SUIT) (Diedrichsen, 2006)], We used the resulting transfor-
mation to bring the contrast images (the weighted sums of single beta
images, not images of t values) into a common template space. The
normalized contrast images were then smoothed with a three-
dimensional Gaussian kernel (5 mm FWHM). We performed a random-
effects analysis on these images for statistical evaluation.

Results
Kinematics and learning
Subtle differences in movement kinematics can induce substan-
tial changes in the cerebellar BOLD signal (Seidler et al., 2002).
Given this, we trained subjects in a separate session to match
several key measures of performance, including movement time,
peak velocity, and reach amplitude, across trial types. These ki-
nematic variables were also measured during the fMRI session.
Analyses of these data indicated that the error and correct trials
were exactly matched (Table 1). Inspection of the velocity profiles
(Fig. 2) revealed a slight effect of the presence of the force pulse,
but no effect of the expectation and, importantly, no interaction
between expectation and outcome. Thus, kinematics were very
similar regardless of whether a trial contained a prediction error.

This pattern of results was present both at the group level (Fig. 2a)
and for individual subjects (Fig. 2b).

Kinematic measurements were analyzed using a 2 � 2
repeated-measures ANOVA with the factors Feedback Expecta-
tion (expect presence or absence of a force pulse) and Movement
Outcome (experience presence or absence of a force pulse). Sys-
tematic differences in kinematics between correct and error trials
would be manifest as an interaction in this analysis. No signifi-
cant main effects or interactions were observed for the movement
time (expectation: F(1,9) � 1.7, p � 0.23; outcome: F(1,9) � 0.04,
p � 0.85; interaction: F(1,9) � 0.01, p � 0.92) or peak velocity
(expectation: F(1,9) � 1.22, p � 0.30; outcome: F(1,9) � 0.07,

Table 1. Behavioral performance

Pulse expected Pulse unexpected

Pulse No pulse Pulse No pulse

Proportion of trials (%) 52.3 (6.46) 47.7 (6.46) 49.1 (4.21) 50.9 (4.21)
Time to feedback (ms) 181.8 (15.4) 182.2 (15.5) 184.0 (16.75) 185.1 (21.9)
Time to reversal (ms) 280.5 (36.0) 312.8 (31.9) 283.6 (34.8) 311.8 (35.1)
Return time (ms) 504.4 (77.1) 480.2 (56.3) 502.2 (73.3) 463.4 (63.4)
Peak velocity (cm/s) 57.8 (5.76) 57.8 (5.98) 57.2 (5.14) 57.3 (5.29)
Reach Amplitude (cm) 9.05 (0.99) 10.72 (1.53) 8.95 (0.92) 10.57 (1.54)

Time to feedback is calculated from response initiation until the cursor reached the edge of the stimulus arc. Time to
reversal is calculated from movement initiation until the zero-crossing of the velocity, and return time is calculated
from the time of the movement reversal to movement termination near the starting position. Values are presented
as between-participant means (and SDs). Error trials (middle two columns, italicized) occurred when the outcome
did not match the expectation.
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Figure 2. Behavioral performance during scanning. a, Average velocity profiles along the
principal direction of motion in the four conditions during the fMRI session, averaged across
participants (between-participant standard error shown as shaded regions). The average tim-
ing of the force pulse is indicated by the vertical lines, with dashed lines corresponding to the
onset and offset of the pulse and the solid line corresponding to the peak of the force pulse.
Hand velocity was most affected by the presence or absence of the force pulse, while neither the
expected outcome nor the mismatch between expected and actual outcome had an effect. b,
Sample velocity profiles from a representative subject (subject 2, third MRI block). Velocity
profiles were affected by the presence of the force pulse (top vs bottom), but kinematics were
unaffected by behavioral errors (e.g., the graphs on the bottom show similar velocity profiles
despite the fact that the bottom left graph contains a prediction error while the expectation is
confirmed on the bottom right).

Schlerf et al. • Error Signals in the Human Cerebellum J. Neurosci., April 4, 2012 • 32(14):4913– 4922 • 4915



p � 0.8; interaction: F(1,9) � 0.01, p � 0.92). For movement
amplitude, the effect of movement outcome was significant
(F(1,9) � 66, p � 0.0001). Movement amplitude was shorter by 1.6
cm (SD � 0.64 cm) on trials with a force pulse because the force
pulse was applied against the direction of movement. The main
effect of expectation was marginally reliable (F(1,9) � 4.32, p �
0.06), with the mean amplitude larger by 0.13 cm (SD � 0.2)
when participants expected a force pulse. Most importantly,
however, the two factors did not interact (F(1,9) � 0.01, p � 0.92).
Indeed, not only were all of the interaction terms nonsignificant,
but they were very close to zero. Thus, our extended training was
successful in equating movement parameters across the different
expectation outcomes. This ensures that the critical fMRI com-
parison between correct and error trials (the interaction between
expectation and outcome) is based on trials well matched with
respect to basic kinematic variables.

Interestingly, the behavioral data also showed that partici-
pants adapted their behavior based on the movement outcome.
After experiencing a force pulse, participants reached faster (F(1,9) �
8.44, p � 0.05) and slightly farther (F(1,9) � 52.23, p � 0.001) on the
next trial compared with movements following trials without a force
pulse. The change is consistent with the hypothesis that the expected
probability of a force pulse is adjusted based on the prediction error
from the last trial (Thoroughman and Shadmehr, 2000). Thus, the
behavioral results indicate that these prediction errors produce sub-
tle behavioral changes, even though the participants were success-
fully trained to produce similar movements regardless of whether or
not they expected a force pulse.

Cerebellar activation, uncorrected for physiological variation
We first examined the contrast of Movement versus Rest to en-
sure that we are able to activate the cerebellum in this task. Figure
3a shows the regions activated when making a reach. We found
the expected activation in the anterior (lobule V/VI) and inferior
(lobule VIII) hand representation on the ipsilateral side (Grodd
et al., 2001; Wiestler et al., 2011), with some spread to the con-
tralateral hemisphere, but in general no activation in Crus I and
Crus II.

To detect regions of the cerebellum that encode sensory pre-
diction errors, we contrasted error trials and correct trials. This
should identify areas sensitive to prediction errors arising from
both the presence of unexpected sensory stimulation and the
absence of expected sensory stimulation. In our initial analysis,
this comparison (Fig. 4a) revealed no areas within the cerebellum
that showed a larger increase in the BOLD signal on trials involv-
ing prediction errors compared with trials in which the predicted
outcome was experienced. Surprisingly, these initial results re-
vealed the opposite outcome: the BOLD response in the cerebel-
lum on error trials was generally lower than the BOLD response
on correct trials. Correct trials were associated with significantly
greater activation than incorrect trials in large clusters of Crus I
and II (p � 0.05 corrected; Table 1), lobules that are typically not
associated with sensorimotor control (Stoodley and Schmah-
mann, 2009). Indeed, these regions were specifically not activated
in the contrast of movement versus rest (Fig. 3a). Furthermore,
this decrease in activation was very broad, covering almost the
entire cerebellar cortex. This lead us to suspect that there may
have been an artifact present in our data, causing a spurious
signal decrease following error trials.

Relationship of heart rate and prediction errors
We next examined how basic physiological processes such as
heart rate and breathing were related to the occurrence of errors

in our reaching task. Heart rate deceleration is observed when
people anticipate making a response (Damen and Brunia, 1987)
or terminate a prepared response (Jennings et al., 1991). Heart
rate deceleration has also been observed following movement
errors (Jennings and van der Molen, 2002) or feedback about
nonmotor, cognitive errors (Crone et al., 2005). Although the
influence of heart rate and breathing on fMRI data has been
described (Glover et al., 2000; Shmueli et al., 2007; Birn et al.,
2008; Chang et al., 2009), the potential impact of these factors on
BOLD measurements of performance and learning has not been
considered.

A slight drop in heart rate was visible during the intertrial
interval between movements (Fig. 5a), possibly reflecting cardiac
deceleration associated with the anticipation of the forthcoming
trial (Damen and Brunia, 1987). Importantly, there was also a
decrease in heart rate when participants committed an error
compared with that observed on correct trials (Fig. 5b). The mag-
nitude of this difference was �1% of mean heart rate and lasted
for �8 s. We averaged the normalized heart rate over a 4 s win-
dow following the response (i.e., the intermovement interval).
These data were analyzed with a 2 � 2 repeated-measures
ANOVA involving the factors Feedback Expectation and Move-
ment Outcome. Neither main effect was reliable (Expectation:
F(1,9) � 0.27, p � 0.62; Outcome: F(1,9) � 4.02, p � 0.076), despite
a trend toward increased heart rate following a somatosensory
stimulus (0.2%). Importantly, the interaction was highly signifi-
cant (F(1,9) � 19.83, p � 0.002). Thus, heart rate decelerated
following either type of error. A similar analysis of breathing rate
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z=-27

z=-30

z=-45

z=-48

z=-51

z=-54

No covariates Heart rate covariates
includeda b

Figure 3. fMRI results, comparing movement against rest. a, Standard analysis (no cardiac
covariates) shows increased (red) and decreased (blue) BOLD response associated with move-
ment. Activation is largely ipsilateral in lobules V, VI, and VIII. b, After accounting for heart rate
fluctuations, the response is slightly decreased in size, but the spatial distribution remains the
same. Images are thresholded at p�0.01, uncorrected, with statistical significance assessed by
evaluating the volume of the active cluster. Numerous clusters of significant spatial extent ( p�
0.05 after correction for multiple comparisons; Table 2) were detected.
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failed to reveal any systematic relationship of this physiological
variable to our behavioral conditions.

Can the observed cardiac deceleration following error trials
explain why the BOLD signal was lower on error trials compared
with correct trials? To test for this possibility, we first determined
how variation in heart rate influenced the cerebellar BOLD sig-
nal. Previous work suggested that the effects of heart rate on
BOLD last for �24 s (Shmueli et al., 2007; Chang et al., 2009). We
therefore chose to estimate the influence of heart rate at temporal

lags of 0 –22 s by including 12 regressors,
each consisting of the instantaneous heart
rate shifted temporally by 2 s: the first re-
gressor contained the instantaneous heart
rate, the second contained the heart rate
delayed by 2 s, and so forth. Using this
model, we estimated the cerebellar cardiac
response function for our participants. A
positive relationship was observed be-
tween heart rate and cerebellar BOLD re-
sponse with a delay of �4 s; at these lags,
therefore, a decrease in heart rate was
associated with a decrease in the BOLD
response. The response function was relatively
homogenous across three subdivisions of the
cerebellum, which were selected to corre-
spond to the distribution territories of the
primary cerebellar arteries. This function
was similar to that observed for the neo-
cortex, though with a less pronounced dip
at 12 s (Chang et al., 2009). Heart rate had
a significant effect on the BOLD signal for
57% of the cerebellar voxels (F(12,108) �
2.354, p � 0.05 corrected using false dis-
covery rate), regardless of whether these
voxels were relevant for the movement
task (Fig. 5c). Overall, the addition of

cardiac regressors accounted for �3% of the total variance of
the raw BOLD signal across the cerebellar cortex. In the same
area, the behavioral regressors accounted for �1.6% of the
total variance.

The preceding analyses indicate that both heart rate and be-
havior influence the BOLD signal. Given that these two variables
are not independent, it is important to carefully consider whether
we can separate the influence of these factors. That is, if we wish to
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Figure 4. fMRI results, contrasting error trials and correct trials. Images are thresholded at p � 0.01, uncorrected, with
statistical significance assessed by evaluating the volume of the active cluster. a, Standard analysis (no cardiac covariates) shows
a decrease in BOLD response (blue) on error trials compared with correct trials. No cerebellar clusters showed a larger response on
error trials. b, After accounting for heart rate fluctuations, a significantly error-related cluster ( p � 0.002 after correction for
multiple comparisons) is observed in right lobules V and VI (red). c, Signal change for all eight conditions in the ROI analysis of
error-selective voxels. The BOLD response is elevated for both types of errors (inner bars). This error signal was not modulated by
the presence or absence of visual feedback.

Table 2. MNI coordinates of activation clusters

Contrast

Cluster Peak voxel MNI coordinates (mm)

Cerebellar lobulesSignificance
p
(corrected)

Volume
(cm 3) Z

p
(uncorrected) x y z

Error Trials � Correct Trials ** 0.001 1.00 3.66 0.000 24 �48 �20 Right V and VI
Correct Trials � Error Trials ** 0.000 2.13 3.94 0.000 �46 �62 �36 Left VI, Crus I, Crus II

** 0.000 1.40 3.72 0.000 48 �66 �36 Right Crus I, Crus II, VIIb
** 0.000 1.19 3.62 0.000 0 �62 �30 Right VI, Crus I, Crus II; Vermis VI through VIIIb
** 0.005 0.80 3.10 0.001 2 �50 �16 Bilateral I through V
* 0.037 0.56 3.47 0.000 �2 �72 �40 Bilateral Crus II, VIIb, IX; Vermis VIIIa and VIIIb

Unexpected Sensory Stimulus � Other Trials ns — — — — — — — —
Other Trials � Unexpected Sensory Stimulus ** 0.000 1.66 3.70 0.000 �6 �56 �36 Left VI, Crus I, and IX; Bilateral Crus II and VIIb; Vermis

VIIIa, VIIIb, IX
** 0.000 1.88 4.14 0.000 �24 �60 �30 Left VI, Crus I, Crus II
** 0.001 1.09 4.01 0.000 16 �76 �32 Right VI, Crus I, Crus II; Vermis VI
* 0.013 7.44 3.31 0.000 �28 �50 �34 Left VI, Crus I, Crus II

Sensory Stimulus Trials � No Stimulus ns — — — — — — — —
No Stimulus Trials � Sensory Stimulus ** 0.000 2.840 4.01 0.000 �12 �70 �32 Left VI through VIIIa
Visual Feedback � No Feedback ns — — — — — — — —
No Visual Feedback � Feedback ** 0.000 2.296 4.64 0.000 �2 �32 �42 Right V, VI, IX and X

** 0.004 0.896 3.61 0.000 �28 �48 �30 Left V, VI, Crus I
* 0.016 0.704 4.25 0.000 14 �70 �36 Right Crus I, Crus II, VIIb; Vermis VI
* 0.024 0.648 4.14 0.000 �24 �78 �28 Left Crus I, Crus II

Move � Rest ** 0.000 31.032 5.31 0.000 30 �42 �28 Bilateral I through VIIIa; Right VIIIb, IX, X; Vermis
VIIIb, IX

Rest � Move ** 0.000 3.392 4.02 0.000 16 �84 �30 Right Crus I, Crus II
** 0.004 1.288 4.04 0.000 �22 �84 �30 Left Crus I, Crus II

Shown are the clusters of activation for the contrasts of interest. We present the volume of the cluster, the peak voxel activation, the MNI coordinates �in SUIT space (Diedrichsen, 2006)	, as well as the anatomical extent of the cluster �in
lobules (Diedrichsen et al., 2009)	. *p � 0.05, **p � 0.005.
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estimate the effect of error trials indepen-
dent of the accompanying change in heart
rate, it is necessary to demonstrate that
there is substantial variation in heart
rate that is independent of the behavioral
outcome. To examine this, we conducted
a multiple regression analysis using the er-
ror contrast as the independent variable
and heart rate at specific lags as the depen-
dent variable. The largest coefficient of de-
termination (R2) was observed with a heart
rate lag of 6 s. Even at this lag, the error re-
gressor only explained 2% of the total vari-
ance of the rate fluctuations. Much of the
variance was explained by other outcome-
independent factors, such as the occurrence
of the rest phases (which also led to a drop in
heart rate).

Given this relative independence, we
entered the 12 heart rate regressors and
the behavioral regressors into a single lin-
ear model. Since the two sets of regressors
are slightly codependent, the expected
variance of the regressors of interest will
increase. The size of this increase can be
analytically calculated, because the ex-
pected variance of the regression coeffi-
cients is proportional to (XTX)�1, where
X is the design matrix (Dale, 1999). In our
case, the expected variance of the error
contrast increased by 16% (SD � 13%)
through the inclusion of the 12 heart rate
regressors. Thus, while there was some
loss of accuracy, there was sufficient vari-
ation in heart rate—independent of
whether the trial contained an error or not—to enable the accu-
rate estimation of the BOLD response to both physiological and
behavioral factors.

Cerebellar activation, corrected for heart rate variation
When looking at the response to movement (Fig. 3b), we can see
that the estimates of the BOLD signal changes were slightly lower
after the addition of physiological factors into the model, consis-
tent with the idea that some of the increases were not due to
increases in neural activity, but to increases in heart rate during
movement phases. Overall, however, the location of the activa-
tion was largely unchanged.

We again compared trials with and without prediction errors,
including a correction for heart rate in our model (Fig. 4b). The
widespread activation decreases that had been observed on error
trials compared with correct trials were no longer observed, con-
firming our intuition that these decreases in signal were artifac-
tual. Instead, a single cerebellar region showed increases in
activation on error trials (1 cm 3 with t � 2.82, p � 0.01, cluster-
wise p value corrected for multiple test: p � 0.002). The cluster
lies in the right hemisphere, in lobules V and VI, a region associ-
ated with movement and somatosensation of the right hand (Ri-
jntjes et al., 1999; Grodd et al., 2001). The effect was also evident
in an analysis of individual datasets. In nine of the 10 participants,
a significant increase of activation on error trials was observed in
a cluster within the hand area of right lobule V/VI (height thresh-
old, p � 0.05 uncorrected, extend threshold � 160 mm 3). In
contrast, only three of 10 participants showed clusters of this size

in a control region of comparable size (left Crus I). Interestingly,
seven of 10 participants also showed an error-related cluster in
left lobule VIII, and eight had active clusters in right lobule VIII.
However, this region did not reach significance at the group level.
Overall, therefore, our results clearly show a neural signature of
prediction errors in motor-related regions of the human cerebel-
lum, an effect that would have been missed if we did not correct
for BOLD signal changes induced by heart rate.

Critically, the response within this region was similar for both
the presence of unexpected sensory stimulation and the absence
of expected sensory stimulation (Fig. 3c). Thus, the cerebellar
activation related to prediction errors in this region was not
asymmetric. To directly test the idea that other cerebellar regions
may selectively encode errors signaled by the presence of an un-
expected sensory stimulus, we compared these trials against the
other three trial types. This contrast failed to reveal any reliable
effects in the cerebellum (Fig. 6a). Thus, this null result provides
further support for the hypothesis that the cerebellum is respon-
sive to sensory prediction errors in a general sense and is not
restricted to the processing of unexpected sensory events.

Similarly, the cerebellar BOLD signal did not respond
strongly to sensory input: a contrast of the presence or absence
of the force pulse revealed no active clusters (Fig. 6b). This
finding is in agreement with reports that light somatosensory
stimulation does not lead to reliable increases in cerebellar
BOLD signal (Wiestler et al., 2011).

In a final analysis, we examined whether the cerebellar error
signal depended on visual feedback of the cursor. On trials with
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visual feedback, there are two error signals, a somatosensory sig-
nal that occurs when the force pulse is experienced when unex-
pected or not experienced when expected, and a visual signal
indicating that the cursor did not move in the predicted direc-
tion. On trials without visual feedback, the trial outcome (correct
or error) was only signaled by somatosensory information. We
did not find any differences in cerebellar activation between trials
with and without visual feedback. Moreover, no significant clus-
ters were observed in an interaction analysis of the factors Vision
and Outcome (correct vs incorrect).

We also explored the effect of visual feedback in a region of
interest analysis. For this analysis, we created spherical ROIs
(3 mm radius) on a subject-by-subject basis, centered at the
voxel in right lobules V and VI, which demonstrated the stron-
gest error related activity. We then extracted the average signal
change across these voxels. These data were analyzed with a
three-way ANOVA with factors Sensory Stimulation, Sensory
Expectation, and Visual Feedback (with subject identity en-
tered as a random effect). Reflecting the selection criterion,
the activation was strongest on error trials (Stimulation �
Expectation interaction: F(1,9) � 27.28, p � 0.001). Impor-
tantly, this effect was not modulated by the presence or ab-
sence of Visual Feedback (three-way interaction: F(1,9) � 1.89,
p � 0.2), a comparison which is independent of our selection
criteria. The independent main effect of Visual Feedback ap-
proached reliability in these voxels (F(1,9) � 4.33, p � 0.07),
but did not interact with Sensory Stimulation (F(1,9) � 2.67,
p � 0.13) or Sensory Expectation (F(1,9) � 0.08, p � 0.75).
Together, these results indicate that the observed error-related
activity was driven by the somatosensory mismatch, rather
than visual feedback of the erroneous trajectory.

Inferior olivary responses to prediction errors
An important consideration for the study of sensory prediction
errors with fMRI is that it is currently unknown whether climbing
fiber activity affects the cerebellar BOLD signal (Zhang et al.,
2003; Diedrichsen et al., 2010). In contrast, there is substantial

evidence that increased mossy fiber input leads to a strong vaso-
dilatory response, and hence to an increase in BOLD signal
(Thomsen et al., 2009; Howarth et al., 2010). Thus, error-related
signal increases cannot be evaluated as evidence of climbing fiber
activity. Previous studies, however, have argued that activity in
the climbing fiber system can be observed through conventional
BOLD imaging of the inferior olivary complex (Xu et al., 2006;
Liu et al., 2008). To test for the presence of such signals in our
current dataset, we identified a region encompassing the infe-
rior olive in SUIT space using a brainstem atlas (http://www.
dartmouth.edu/�rswenson/Atlas/BrainStem), and subsequently
warped this ROI back into individual space for analysis. How-
ever, we failed to detect any error-related activity in these voxels
(Fig. 7), regardless of whether physiological covariates were ig-
nored (Fig. 7a) or included (Fig. 7b) in the analysis. This null
result is tempered by the fact that nearly 25% of the variance of
the olivary signal was related to the cardiac and respiratory phase
(Fig. 7c). While previous studies have revealed BOLD variation
within the inferior olive (Xu et al., 2006; Liu et al., 2008), they did
not take physiological factors into account at all. Our current
results underline the challenges involved in discriminating neural
signal from physiological noise within the BOLD response in the
olivary complex (Harvey et al., 2008).
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tions. c, Effect of different physiological variables on the BOLD signal in the inferior olive. Left,
Nearly 25% of the variance of the BOLD signal could be explained by the cardiac or respiratory
phase (Glover et al., 2000), consistent with the proximity of the inferior olive to the arterial
blood supply. Right, Heart rate alone accounted for �2% of the variance in the BOLD signal in
the olive.
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Discussion
The current results reveal a representation of somatosensory predic-
tion errors in the human cerebellum. A restricted region, cerebellar
lobules V and VI, showed an increased BOLD response to prediction
errors arising from either the unexpected occurrence of a sensory
event or the unexpected omission of an expected somatosensory
stimulus. These regions are also active during movement. Notably,
had we ignored the influence of heart rate or failed to record it con-
currently with behavior, we would have either missed this response
entirely or erroneously concluded that prediction errors cause a
broad decrease in cerebellar BOLD response.

Our study underscores the need to carefully correct for the
influence of heart rate and breathing when studying cerebellar
function with fMRI. This issue is also relevant for neuroimaging
studies focusing on brainstem nuclei such as the inferior olive,
given that this region is highly sensitive to physiological factors
(Harvey et al., 2008). The inclusion of physiological regressors is
especially important when, as in our study, heart rate covaries
with one or more of the experimental manipulations.

Sensory prediction errors are central to our understanding of
cerebellar function and its contribution to behavior. Damage to
the cerebellum results in learning deficits (Smith and Shadmehr,
2005; Martin et al., 1996; Maschke et al., 2004; Morton and Bas-
tian, 2006; Tseng et al., 2007), which can be attributed to a failure
of short-term learning or adaptation. Adaptation is characterized
as an error-driven process, where the errors experienced during
one trial lead to a corrective adjustment in the motor output on
the next trial (Thoroughman and Shadmehr, 2000; Donchin et
al., 2003; Cheng and Sabes, 2006; Wolpert et al., 2011). The spe-
cific circuitry of the cerebellum has long been thought to be an
ideal neural circuit for error-based learning (Marr, 1969; Albus,
1971; Ito, 2001). Such mechanisms are often evoked in explaining
the cerebellar contribution to model systems of motor learning
such as eyeblink conditioning (Gellman and Miles, 1985; Berthier
and Moore, 1986; Christian and Thompson, 2003) and gain ad-
justment in the vestibulo-ocular reflex (Ito, 1998; Sadeghi et al.,
2010). The current results point to a signature of sensory predic-
tion error representation in the human cerebellum, which could
be used for learning in more complex reaching tasks.

The results of previous imaging studies of the cerebellum,
while consistent with an error processing interpretation, are
problematic due to a number of confounding factors. For exam-
ple, Imamizu and colleagues (2000) demonstrated greater cere-
bellar BOLD signal early in learning, an epoch in which
prediction errors are greatest. However, the response may have
been related to corrective movements that are also prominent
during this period. Similarly, a recent study (Fautrelle et al., 2011)
reported more lobule VI activity (bilateral) when participants
caught objects whose weight was unpredictable compared with
when the object’s weight was predictable. While broadly consis-
tent with our finding here, some of this activation may have been
due to sensory or motor differences caused by online corrections,
which were triggered by experiencing the unexpected weight.
While in the current study, on-line corrections may have oc-
curred after the force pulse, we succeeded in tightly matching
kinematic parameters across correct and error trials. Therefore,
differences found in the cerebellar BOLD signal cannot have been
caused by kinematic differences induced by on-line corrections,
but provide strong evidence of the representation of somatosen-
sory errors.

Blakemore and colleagues (1998, 2001) previously showed
less cerebellar activation on trials in which a self-generated action

produced predictable sensory stimulation compared with when
the same stimulation was applied in the absence of movement
and thus unexpected. It is puzzling that this sensory error signal
was observed contralateral to the arm receiving the stimulation,
given that somatosensory representations in the cerebellum are
generally ipsilateral (Grodd et al., 2001). It is also noteworthy that
this study used a blocked design in which the participant either
produced sinusoidal movement (with predictable sensory conse-
quences) or received similar sensory stimulation without move-
ment. Our event-related design provides a more direct approach
to address hypotheses about the response to sensory prediction
errors that are relevant for the motor system, and additionally
allowed us to test both the presence of unexpected stimuli and the
absence of predicted stimuli.

Neurophysiological evidence, obtained across a range of tasks,
have led to the hypothesis that cerebellar error representation is
asymmetric. During eyeblink conditioning, complex spike activ-
ity increases following the unexpected delivery of an aversive air
puff. In contrast, complex spikes are not observed during extinc-
tion (McCormick et al., 1985); here, an error occurs when an
expected air puff is not presented. Similarly, neuronal activity in
the inferior olive of the cat during reaching movements responds
asymmetrically to unexpected events (Horn et al., 2004). Olivary
responses are observed when an unexpected obstacle disrupts the
trajectory, as well as when an unexpected stimulus is applied
during the postural phase of the trial. This response is absent
when the animal attempts to contact a target that has been re-
moved (the absence of an expected tactile stimulus). It should be
noted that, in this study, vision of the target was not precluded;
thus, the absence of the expected somatosensory stimulation
from contacting the target may not constitute an error given that
the animal could see that the target had been withdrawn. Indeed,
other studies have shown that climbing fiber signals can be elic-
ited by the unexpected absence of a tactile stimulus, at least when
an immediate corrective movement is produced (Andersson and
Armstrong, 1987). Our design allows a more direct comparison
of errors resulting from the unexpected presence or unexpected
absence of a somatosensory stimulus. We observed a similar in-
crease in the cerebellar BOLD signal in both situations.

The cerebellar error signal, evident in the arm area of lobules V
and VI, may not reflect a sensory-prediction error per se, but
rather provide a signal that the movement has failed to achieve
the behavioral goal. We believe this hypothesis does not provide a
parsimonious account of our results. The behavioral data clearly
show that the direction of the error signal was behaviorally rele-
vant. Indeed, despite instructions and training designed to main-
tain a constant kinematic profile, participants (unknowingly)
showed trial-to-trial adjustments in their behavior, speeding up
after experiencing a force pulse and slowing down when the force
pulse was absent. It is this type of involuntary trial-by-trial adap-
tation that is disrupted in patients with cerebellar lesion (Martin
et al., 1996; Maschke et al., 2004; Diedrichsen et al., 2005b; Smith
and Shadmehr, 2005; Morton and Bastian, 2006; Tseng et al.,
2007; Golla et al., 2008).

An error-based hypothesis would predict that the cerebellar
signal should carry information about the form of the error (e.g.,
absence or presence of the force pulse in our study). While we
could not detect a reliable difference between the two types of
errors, this failure was likely due to the limited spatial resolution
and design of our study. If separate but nearby (or interdigitated)
populations of neurons are activated in response to different pre-
diction errors, the changes in the BOLD response are likely to be
highly similar. Advances in high-resolution imaging combined
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with multivariate analysis techniques promises to provide a use-
ful tool to analyze the information content within regions of
activation (Diedrichsen et al., 2011; Wiestler et al., 2011).

Evidence to date suggests that the BOLD response in the cer-
ebellum is primarily driven by mossy fiber activity and local pro-
cessing, possibly with very little direct influence of the rate of
complex spikes (Thomsen et al., 2009; Diedrichsen et al., 2010;
Howarth et al., 2010; but see Zhang et al., 2003). Thus, the acti-
vation pattern we observed does not directly contradict evidence
suggesting that climbing fibers selectively convey the unexpected
presence of sensory events. Unfortunately, our effort to deter-
mine climbing fiber activity by studying the BOLD activation in
the inferior olive was inconclusive. While we did not observe a
signature of prediction errors, such activation may have been
masked by physiological changes related to heart rate and breath-
ing (Harvey et al., 2008). Previous studies that have reported
error-related signal changes in the inferior olive have ignored this
important factor (Xu et al., 2006; Liu et al., 2008).

Our understanding of general principles underlying the role
of the cerebellum in motor learning requires the clear identifica-
tion of the neural correlates of these processes. The current inves-
tigation has provided an important step by demonstrating that
sensory prediction errors during reaching movements are repre-
sented within the cerebellar cortex. Moreover, these signals can
represent errors conveyed by both the expected presence and
unexpected absence of sensory stimulation.
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