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Abstract 

Do movement plans, like representations in working memory, share a limited pool of 

resources? If so, the precision with which each individual movement plan is specified 

should decrease as the total number of movement plans increases. To explore this, 

human participants made speeded reaching movements toward visual targets. We 

examined if preparing one movement resulted in less variability than preparing two 

movements. The number of planned movements was manipulated in a delayed response 

cueing procedure that limited planning to a single target (Exp. 1) or hand (Exp. 2), or 

required planning of movements toward two targets (or with two hands). For both 

experiments, initial movement direction variability was higher in the two-plan than in the 

one-plan condition, demonstrating a cost associated with planning multiple movements, 

consistent with the limited resource hypothesis. In a third experiment we show that the 

advantage in initial variability of preparing a single movement was present only when the 

trajectory could be fully specified. This indicates that the difference in variability between 

one and two plans reflects the specification of full motor plans, not a general preparedness 

to move. The precision cost related to concurrent plans represents a novel constraint on 

motor preparation, indicating that multiple movements cannot be planned independently, 

even if they involve different limbs. 

 

New & Noteworthy 

Various lines of evidence indicate that multiple movements can be prepared in parallel. 

We show that preparing more than one movement comes with a cost: a movement plan 

is more variable if it is prepared simultaneously with another plan. This suggests that the 
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representations of movement plans share a common neural resource, and implies that the 

number of alternative plans is constrained by noise. 
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Introduction 

A simple decision, such as selecting which of two identical cartons of milk to grab from the 

supermarket shelf, involves both perceptual processes, to determine the locations of the 

cartons, and motor processes, to prepare the appropriate movement (Song and 

Nakayama 2009). Neurophysiology studies with non-human primates indicate that 

choosing between two possible actions is not a serial process, whereby one of the two 

actions is selected and then the selected action is planned and executed, but rather a 

parallel process in which both actions are prepared simultaneously (Cisek and Kalaska 

2005; Cisek 2006). These studies suggest that the final movement is the outcome of a 

competition between the motor plans. This idea has been motivated by evidence 

suggesting parallel processing during action preparation (Kornblum et al. 1990; Prescott 

et al. 1999; Cisek and Kalaska 2005; Cisek 2006) and formalized in the affordance 

competition hypothesis (Cisek 2007; Cisek and Kalaska 2010). 

Studies with humans also indicate that we are capable of simultaneously planning multiple 

movements. Behavioral evidence comes from studies examining the effects of non-cued 

targets on movement selection (Gallivan et al. 2015), external perturbations that require 

rapid switches to an alternative plan (Nashed et al. 2014), and tasks in which participants 

are forced to move before the target is fully specified (Ghez et al. 1997; Chapman et al. 
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2010; Stewart et al. 2014; Haith et al. 2015; Gallivan et al. 2016). Neurophysiologically, 

signatures of parallel planning are evident in studies showing the modulatory effects of 

target separation on neural activity (Grent-’t-Jong et al. 2014) as well as cortical inhibition 

of non-selected movements (Duque et al. 2010; Klein-Flugge and Bestmann 2012). The 

level at which movement plans compete has been the subject of considerable discussion. 

Hypotheses range from competition at the level of motor goals (Wong et al. 2014; Haith 

et al. 2015) to competition at the level of biomechanically specified movements (Cos et al. 

2014; Gallivan et al. 2015) and movement control policies (Gallivan et al. 2016). 

Simultaneous preparation of multiple movements has been suggested to enable the motor 

system to respond fast and flexibly to environmental changes (Nashed et al. 2014; 

Gallivan et al. 2016; Klapetek et al. 2016). However, response selection studies show that 

if the number of response options increases, the reaction time also increases (Hick 1952; 

Rosenbaum 1980). This suggests that initiating one prepared movement takes less time 

than initiating one out of two prepared movements. When two movements need to be 

performed simultaneously, response time increases can mainly be ascribed to indirect 

cueing of movements and to a lesser extent to spatial incompatibility of the responses 

(Diedrichsen et al. 2001; Heuer and Klein 2006; Oliveira and Ivry 2008). Thus, the 

preparation and execution of multiple movements simultaneously is associated with 

response time-related costs. 

Here we ask if there are also precision costs related to the simultaneous preparation of 

multiple movements. A central tenet of cognitive psychology is that the brain is limited in 

its capacity for performing multiple tasks simultaneously (Moray 1967), with an 

architecture that allows the system to prioritize among these tasks. These constraints are 

encapsulated in the concept of a shared central resource. Early theoretical and 

quantitative models formalized this concept into a relation between the amount of resource 

dedicated to a goal and the chance of a correct response (Kahneman 1973; Shaw 1978; 
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Norman and Shallice 1980). More recently, work on visual working memory has 

highlighted the idea that resource sharing has consequences for the precision with which 

information is internally represented (Palmer 1990; Bays and Husain 2008; Zhang and 

Luck 2008; van den Berg et al. 2012; Ma et al. 2014). Formally, these models describe 

the variability with which visual items are represented in memory by a power law: As the 

number of items increases, the variability associated with the representation of each item 

increases. 

By analogy, if the internal representations of planned movements share a common 

resource, planning variability should increase as the number of simultaneously-planned 

movements increases. In speeded movements, this increase in planning noise may be 

observable as an increase in movement variability early in the trajectory (recognizing that 

feedforward or feedback control processes may influence latter aspects of the trajectory). 

We tested this prediction by comparing movement variability in conditions requiring one 

or two movement plans, in two different contexts: 1) Within a hand (like moving with one 

hand to pick up the milk carton on the left or the one on the right) and 2) Between different 

hands (like using the left or right hand to pick up a single carton of milk). We found that 

movement plans at both levels of competition were more variable if two movements were 

prepared at the same time than if only one movement was prepared, consistent with the 

concept of a limited resource for movement planning. 

 

Method 

Participants and apparatus 

In total, 64 volunteers (21 males, 43 females) aged 19-36 years (M = 23.9 years 

participated in one of three experiments (16 in Exp. 1; 16 in Exp. 2; 32 in Exp. 3). Sample 
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size for all experiments was fixed before testing. All participants were naïve to the research 

question, had normal hearing ability, and normal or corrected-to-normal visual acuity. Five 

participants were left-handed, the other 59 were right-handed. The study was approved 

by the UCL Research Ethics Committee. 

Participants were seated with their chin on a rest and their index finger(s) touched a 

surface, slanted 30° from the horizontal plane. Via a mirror, stimuli displayed on a 21” CRT 

monitor (screen refresh rate 130 Hz) were reflected into the same plane as the movement 

surface, although participants could not see their hands. Index finger movement was 

tracked at 133.3 Hz with an electromagnetic tracking device (3D Guidance trakSTAR, 

Ascension Technology Corporation, Burlington VT, USA). 

 

Experiment 1 

Participants triggered the start of each trial by placing the index finger of their preferred 

hand on a starting point (crosshair) with the aid of visual feedback (a black circle presented 

at the fingertip location, 0.4 cm diameter, Fig. 1a). After stable finger placement, visual 

feedback was removed and four tones were played at 600 ms intervals over speakers 

(Creative Inspire T10), placed to the left and right of the set-up. Together with the first 

tone, two potential movement targets were presented. The left target location was 

randomly drawn from a 30° arc with a 13.33 cm radius from the starting point. The center 

of the arc was 45° counterclockwise with respect to the mid-sagittal plane. The right target 

was always located 90° in the clockwise direction around the starting point with respect to 

the left target. Targets were red circles, 1 cm in diameter, both of which turned green at 

the same time as the third tone. To verify if movements were prepared in advance of the 

third tone, in 20% of the trials the targets changed position (“jumped”) at the same time as 

the third tone. The new target locations were randomly drawn from the 30° target arc and 
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were at least 10° away from the original locations. Both targets changed by the same 

distance in the same direction (clockwise or counterclockwise) so that the targets were 

always 90° apart. 

In this first experiment, the laterality of the tones (left or right) specified which of the two 

targets was the movement goal. In the early cue block (50% of trials) all tones were played 

from a single speaker, thus specifying the goal early in the trial. In the late cue block (50% 

of trials) the first two tones were played from both speakers and only the last two tones 

were played from either the left or right speaker (Fig. 1c). In the late cue condition, left and 

right targets were randomly interleaved. In the early cue condition, trials to the left and 

right target were blocked and the blocks were counterbalanced across participants. Early 

cued trials were blocked to maximize the chance that participants would plan a single 

movement. Participants were instructed not to move before the third tone (the imperative) 

and to hit the specified target by the time of the fourth tone.  

The first 10 trials for each cue condition were practice trials during which visual feedback 

of the index finger position was provided throughout the movement. For the test trials, 

participants received feedback about the end position of their finger at the end of each 

response, as well as information concerning whether they were successful on that trial.  

Success required an endpoint landing inside the target area within 200 ms of the fourth 

tone. If the movement was initiated before the third tone the trial was aborted and repeated 

with new parameters (1.7% of trials repeated). Each participant completed 450 trials in 

total. 

 

Experiment 2 
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In the second experiment, the tones cued which hand participants had to move toward a 

single target. There were two starting positions (one for each hand), located 8 cm apart, 

and a single target, with the location randomly drawn from a 30° arc with a 12.75 cm radius 

centered halfway between the two starting points (Fig. 1b). The laterality of the tones (left 

or right) specified which of the two hands to move to the target, with early and late cued 

trials tested in separate blocks. Trials were aborted and repeated with new parameters if 

the movement was initiated before the third tone or if the wrong hand moved (7.2% of 

trials repeated). All other features of the design were the same as in Exp. 1. 

 

Experiment 3 

To disentangle the influences of hand selection and movement planning on movement 

variability, we incorporated uncertainty about the target location in Experiment 3. We 

varied the timing of target presentation relative to cue information. The experimental 

configuration was the same as Exp. 2, but there were no target jumps. In half the trials, 

the target was displayed at the first tone (target early), and in the other half it was displayed 

at the third tone (target late). Target early and late trials were blocked and 

counterbalanced between participants. For 16 participants the hand was always cued 

early (hand early; Exp. 3A), and for 16 other participants the hand was always cued late 

(hand late; Exp. 3B). Again, trials were aborted and repeated with new parameters if the 

movement was initiated before the third tone or if the wrong hand moved (3.3% of trials 

repeated). Each participant completed 300 trials in total. 

 

Analysis 
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The fingertip position time series were filtered with a low-pass second-order bidirectional 

Butterworth filter at 10 Hz. Movement speed was obtained by differentiating these series 

in the two-dimensional movement plane. Movement initiation was defined as the last 

sample before peak speed in which the speed was < 2 cm/sec, movement end was 

defined as the first sample after peak speed in which the speed was < 2 cm/sec, and 

movement time was defined as the time between movement initiation and movement end. 

Response time was defined as the time between the third tone and movement initiation. 

Movement direction was measured as the angle of the fingertip position with respect to 

the starting position at the time of peak speed (Messier and Kalaska 1999; Churchland et 

al. 2006a). On average, peak speed occurred at 44% (SEM = 0.4%) of the total movement 

duration (175 ms, SEM = 4 ms after movement initiation). Direction error was defined as 

the deviation of movement direction from a straight line toward the target. Movement bias 

was operationalized as the mean direction error and movement variability as the standard 

deviation of the direction error. 

Practice trials, trials for which there was an error with movement registration, and trials for 

which offline analysis showed that the online registration had failed to detect movement 

of the wrong hand or toward the wrong target, or failed to detect that the initial fingertip 

position was outside the start position, were rejected from analysis (< 7% of all trials). The 

data for one participant in Exp. 1 was discarded as he initially moved in a direction in 

between the two targets on a large number of trials (behavior not seen in other 

participants).  

Movement variability, movement bias, response time and movement time, across items 

and conditions, were examined with ANOVA and post-hoc t-tests. We applied a Welch 

degrees of freedom modification for samples of unequal variance. To assess if response 

time and peak velocity influenced movement variability, we calculated the standard 

deviation of the initial movement directions for each quartile of the data, based on slowest 
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to fastest response time or peak velocity for each condition and each participant. Linear 

regression slopes were fit to the distributions of early- and late-cued no-jump trials for 

each participant, and we determined if the regression coefficients were different from zero 

with a one-sample t-test. The same procedure was used with response time and absolute 

movement bias to analyze if they were correlated. 

 

Results 

To examine the influence of the number of movement plans on movement variability, we 

asked participants to generate rapid reaching movements to one of two visual targets (Fig. 

1a). In the early cue block, target information was presented well in advance of movement 

initiation (Fig. 1c), allowing participants to prepare a single movement. In the late cue 

block, this information was only presented at the time movement initiation was signaled; 

as such, participants should be motivated to prepare movements to both targets given the 

temporal requirements of the task. 

To confirm that movements were prepared in advance of the imperative, the target 

unpredictably changed location (jumped) at the time of the imperative on 20% of the trials. 

If participants were waiting until the imperative to plan their movement, this manipulation 

should not lead to an increase in movement variability. A target (left or right) x cue (early 

or late) x jump (no-jump or jump) repeated measures ANOVA showed a main effect for 

jump, indicating that the initial direction of movement was more variable if the target 

changed position than if it did not (F(1,14) = 20.08, p < 0.001). There was also a significant 

interaction between cue and jump (F(1,14) = 21.56, p < 0.001), revealing that the increase 

in movement variability due to the target jump was actually greater for the early cue than 

for the late cue (Fig. 2a, empty bars). Pairwise comparisons showed that target jumps 

increased movement variability in both the early (t(29) = 6.02, p < 0.001) and late cue 
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conditions (t(29) = 2.65, p = 0.013). The increase in movement variability for the target 

jump condition confirms that participants prepared movements in advance of the 

imperative.  

The key result of this experiment is shown in Fig. 2a (filled bars): initial movement direction 

in the early cue condition was significantly less variable than in the late cue condition (t(14) 

= 4.31, p < 0.001; no-jump trials only). A target (left or right) x target in previous trial (same 

side or other side) repeated measures ANOVA showed that within the late cue block for 

the no jump trials movement variability after the target switched sides (M = 4.0 deg) was 

not different from the variability when the target was on the same side (M = 4.4 deg) 

(F(1,14) = 2.10, p = 0.169), indicating that it is unlikely that the difference between the 

early and late cue condition is due to the blocked design. Thus, we can conclude that 

preparing two movements at the same time results in more variable movements than 

preparing one movement, suggesting a precision cost related to the concurrent planning 

of multiple movements that could be explained by movement plans sharing a common 

resource. 

The concurrent preparation of multiple movements did not affect movement bias. Fig. 3 

shows the probability density distributions of direction errors at the time of peak speed. A 

target (left or right) x cue (early or late) x jump (no-jump or jump) repeated measures 

ANOVA showed a main effect for target, indicating that movements towards the left target 

(M = 2.7 deg) were 2.5 degrees more to the right than movements to the right target (M = 

0.2 deg) (F(1,14) = 8.74, p = 0.010). Thus participants were aiming slightly less eccentric 

than straight to the target. Note that if participants were aiming in between the two targets, 

their initial direction would be 45 and -45 degrees for the left right target respectively, 

which was never observed (Fig. 3). There were no other main effects and no interaction 

effects (all p > 0.166), indicating that the movements were similar in the early and late cue 

conditions. Movement bias was not correlated with response time. The regression 
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coefficients for the relation between response time and movement bias were not 

significantly different from zero for either early or late cued no-jump trials (early: M = 6.0 x 

10-7, t(14) = 0.26, p = 0.797; late: M = –5.1 x 10-6, t(14) = –1.86, p = 0.085). 

Differences between the cue conditions in movement variability were accompanied by 

differences in response time. A target (left or right) x cue (early or late) x jump (no-jump 

or jump) repeated measures ANOVA showed main effects for cue and jump (Fig. 2b). 

Movements were initiated longer after the imperative if the target was cued late than if it 

was cued early (F(1,14) = 22.86, p < 0.001). As illustrated in Fig. 2c, response time was 

uncorrelated with movement variability: Regression coefficients for the relation between 

reaction time and movement variability within the early and late cued no-jump trials were 

not significantly different from zero (early: M = –2.7 x 10-5, t(14) = 2.07, p = 0.057; late: M 

= –4.4 x 10-5, t(14) = 1.60, p = 0.131). Thus, response variability was larger in the late cue 

condition than in the early cue condition even when response times are equated. The 

same was true for peak speed: the regression coefficients for the relation between peak 

speed and movement variability were not significantly different from zero for either early 

or late cued no-jump trials (early: M = –8.5 x 10-5, t(14) = 0.58, p = 0.573; late: M = –1.0 x 

10-4, t(14) = 0.75, p = 0.466). 

The main effect of jump reflects the fact that response times were longer if the target 

changed position than if it did not (F(1,14) = 14.39, p = 0.002). Together with the quick 

response times in the no-jump trials (205–270 ms), this provides further evidence that 

participants planned their movements in advance of the imperative. Moreover, in the early-

cue jump trials reaction time was negatively correlated with movement variability 

(regression coefficient M = –3.9 x 10-4, t(14) = 5.65, p < 0.001). A target jump in the early 

cue condition resulted in almost twice as much initial movement variability as no-jump, 

most likely the result of movements with very short response times being initiated in the 

direction of the target before it jumped. As response times in the late cue condition were 
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longer, the increase in variability is also smaller. This suggests that although movement 

initiation was slightly delayed in response to a target jump, it was not delayed until the 

movement plan was completely updated toward the new target position (Haith et al. 2015). 

This interpretation is in line with the idea that these two processes operate, at least to 

some extent, independently (Oostwoud Wijdenes et al. 2011). 

 

Competing plans between hands 

The results of Exp. 1 suggest that movement plans share a common resource. However, 

two visual targets presented at the same time will also compete for representational 

resources in the brain (Kastner and Ungerleider 2000). Prior to a reach, visuospatial 

attention is directed to the reach target(s) (e.g. Baldauf and Deubel 2010). It is possible 

that the increase in variability that we observed in Exp. 1 when the target was uncertain is 

due to noisier representations of the target locations (i.e., divided visuospatial attention). 

This would not be observed if there was no target uncertainty. In contrast, if the observed 

variability is related to competing movement plans, variability should also increase when 

a single target representation is associated with two movement plans, i.e., when the 

movement may be performed with either the left or right hand (Oliveira et al. 2010). In Exp. 

2, participants were presented with a single target and, in separate blocks, were either 

provided with an early cue or a late cue specifying the response hand (Fig. 1b). 

The results show that planning movements concurrently with two different hands (Exp. 2) 

has very similar consequences to planning two movements with one hand (Exp. 1). The 

initial direction of responses was more variable in the late cue condition than in the early 

cue condition for the no-jump trials (t(15) = 3.86, p = 0.002; Fig. 4a, filled bars). Thus we 

find the same precision-related cost of planning two movements at the same time. 
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As in Exp. 1, the jump trials confirm that the participants planned their responses in 

advance of the imperative. The hand (left or right) x cue x jump repeated measures 

ANOVA showed that the initial movement direction was more variable for jump than for 

no-jump trials (F(1,15) = 43.45, p < 0.001). The interaction between cue and jump was 

also significant, indicating that the effect of the target jump was again larger for early than 

for late cue trials (F(1,15) = 19.91, p < 0.001). Post-hoc comparisons showed that jump 

trials were more variable than no-jump trials for early-cued (t(31) = 7.34, p < 0.001) and 

late-cued trials (t(31) = 4.21, p < 0.001). Thus movements were planned before the 

imperative, and movement execution was more precise for one planned movement than 

for two movements planned at the same time. 

The movement bias results were also replicated in Exp. 2 (Fig. 5). A hand (left or right) x 

cue (early or late) x jump (no-jump or jump) repeated measures ANOVA showed a main 

effect for hand. Movements with the right hand (M = 1.93 deg) were more biased towards 

the right and movements with the left hand were biased to the left (M = -1.14 deg) (F(1,15) 

= 40.08, p < 0.001). The interaction effect between hand and jump was close to significant 

(F(1,14) = 3.79, p = 0.071), indicating that the bias for both hands was closer to zero for 

jump trials than for no-jump trials. The other effects were not significant (all p > 0.189). 

The regression coefficients for the relation between response time and movement bias 

were also not significantly different from zero for either early or late cued no-jump trials 

(early: M = 1.1 x 10-6, t(15) = 0.69, p = 0.501; late: M = 3.1 x 10-7, t(15) = 0.11, p = 0.915). 

Responses were initiated faster in the early than in the late cue condition and also faster 

if the target did not jump than if it jumped (F(1,15) = 102.9, p < 0.001 and F(1,15) = 13.47, 

p = 0.002, respectively; see also Fig. 4b). Response times were shorter and peak speeds 

were lower in the early cue condition than in the late cue condition. There was no 

correlation between timing parameters and movement variability in the no-jump conditions 

(regression coefficients for response time [early: M = -6.0 x 10-6; t(15) = 0.36, p = 0.726; 
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late M = 3.7 x 10-5; t(15) = 1.32, p = 0.206] and peak speed [early: M = 6.4 x 10-5; t(15) = 

0.36, p = 0.722; late M = 2.3 x 10-4; t(15) = 1.20, p = 0.249] were not significantly different 

from zero). Thus, as in Exp. 1, the target jump resulted in delayed movement initiation and 

higher movement variability. 

General preparedness 

Our central hypothesis is that the increased variability in two-plan conditions is due to 

competition between motor plans. We assume that these plans entail some specification 

of desired trajectories, either in egocentric or joint space (Shadmehr and Mussa-Ivaldi 

1994; Gallivan et al. 2015). An alternative possibility is that the differences in variability 

reflect a more general preparedness of the hand to move that doesn’t require trajectory 

specification, such as hand selection. To examine if hand preparedness influences 

movement variability, we conducted a third experiment in which we manipulated the timing 

of the target presentation while the hand was cued early (Exp. 3A) or late (Exp. 3B). Given 

that a trajectory cannot be specified until the target is known, we predicted that the 

increase in variability associated with multiple plans would only be observed when the 

target was presented in advance of the imperative signal (early), and would not be found 

when the target was presented at the time of the imperative signal (late). 

When the target was presented early, movements were more variable if the hand was 

cued late than if the hand was cued early, replicating the findings of Exp. 2 (between-

participants, Welch two sample t-test: t = 2.21, p = 0.031; Fig. 4a, filled bars). The critical 

test in this experiment involves the conditions in which the target was presented at the 

time of the imperative (late), given our assumption that this would preclude movement 

planning. Here there was no effect of hand-cue timing: variability was similar for the hand 

early and hand late conditions when the target was presented late (Welch two sample t-

test: t = 0.06, p = 0.950; Fig. 4a, hatched bars). Moreover, variability in these conditions 
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was greater than in the target early/hand early condition (target late/hand early - paired-

samples t-test: t(31) = 2.36, p = 0.025; target late/hand late - Welch two sample t-test: t = 

2.15, p = 0.036) suggesting that movement variability is reduced when the forthcoming 

movement can be completely specified. 

Although this was not a straightforward reaction time task, the response time data were 

congruent with what one would expect based on results of speeded response paradigms 

(Rosenbaum 1980). Responses were initiated earlier if the target was presented early 

than if it was presented late, an effect observed for both hand cued early (t(31) = 3.44, p 

= 0.002) and hand cued late (t(31) = 2.21, p = 0.034), see Fig. 4b. Response times were 

also faster if the hand was cued early than if it was cued late (target early: t(36.40) = 5.91, 

p < 0.001; target late: t(46.33) = 6.97, p < 0.001). Thus, in line with previous findings, 

responses were faster when more information was specified before the imperative, 

whereas late specification of the hand delayed responses more than late specification of 

target position. 

 

Discussion 

We examined if movement plans share a common resource, by testing if planning 

variability was affected by the number of movements prepared concurrently. We 

compared initial movement variability in an early cue condition, where preparation should 

be limited to a single movement, to a late cue condition, in which we assumed participants 

would have to prepare two different movements, given the constraints on reaction time. 

As predicted, the initial movement direction in the early cue condition was less variable 

than in the late cue condition, regardless of whether the two plans corresponded to two 

different movements of the same hand (Exp. 1; Fig. 2), or movements with the two different 

hands (Exp. 2; Fig. 4).  
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To confirm that participants’ engaged in advance planning, we included control conditions 

in which the target changed position at the time of the imperative. If the process of planning 

a movement in all conditions began only at the imperative, the previous location of the 

target would be irrelevant and there would be no cost in the target jump conditions. In 

contrast to this prediction, the initial movement variability and response time increased in 

the target jump conditions (Figs. 2a and 3a empty bars). Thus, it appears that, consistent 

with our assumption, movement preparation began before the imperative. The increase in 

variability and response time observed when the target jumped is likely due to the need 

to update plans. For very short response times, movements may be initially directed 

toward the old target location, or to locations between the old and the new target (Van 

Sonderen and Denier van der Gon 1991; Haith et al. 2015). The increase in variability was 

larger in the early cue condition because here movements were initiated earlier on 

average, and therefore when target location was more uncertain.  

Our results demonstrate a precision cost related to simultaneously preparing multiple 

movements. This precision cost resembles the cost observed in studies of visual working 

memory (Ma et al. 2014; Bays 2015), although the increase in variability observed in the 

present study is somewhat smaller than typically observed in studies of visual working 

memory. In the working memory studies, variability in recall is found to increase steadily 

and in a continuous manner as the number of items in memory increases (Palmer 1990; 

Wilken and Ma 2004; Bays and Husain 2008; Bays et al. 2009; van den Berg et al. 2012). 

Moreover, salient or goal-relevant items are stored with increased precision, but at a cost 

to the memorability of other items in memory (Bays and Husain 2008; Bays et al. 2011; 

Gorgoraptis et al. 2011). These results are consistent with the hypothesis that working 

memory is constrained by a limited resource that is shared between the representations. 

Our results point to a similar constraint for multiple competing movement plans when there 

are multiple task-relevant targets (Cisek 2006; Chapman et al. 2010; Duque et al. 2010; 
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Gallivan et al. 2015), or when movements to a single target can be accomplished with 

either hand (Oliveira et al. 2010). We suggest that the neural mechanisms that cause the 

representational noise to increase for multiple items in working memory also impacts the 

fidelity of the representation of multiple movement plans. That is, we propose that neurons 

face similar energetic constraints when representing multiple visual features or 

movements, and that the way in which this problem is resolved is similar for the two 

systems. The variability increase for two competing movement plans may be less than for 

two competing items in working memory because for reaching, resources can be 

dynamically reallocated after the late cue. It is also possible that there is a different power 

law constant for movement planning resources than for working memory resources. 

Additionally, other factors than the amount of resources dedicated to the movement plan, 

for which the power law relationship does not hold, might affect movement variability, for 

example online movement corrections. 

A neural model in which feature representations are based on population coding, with the 

limited shared resource construct implemented by normalization of population activity, can 

reproduce the specific distributions of errors observed in visual working memory (Bays 

2014). As the number of items increases, the firing rates associated with each item 

decrease, and it becomes harder to distinguish spikes representing individual items from 

noise; thus working memory variability increases. This model is supported by 

neurophysiological findings showing that the firing rates correlated with features of 

remembered items decreases as the number of items increases (Buschman et al. 2011). 

In addition, in human fMRI, the amplitude of the BOLD response associated with target 

representations in working memory decreases as the number of represented items 

increases from one to two (Sprague et al. 2014). Mirroring the findings on firing rates for 

items in working memory, non-human primate electrophysiology studies show that 

average firing rates decrease and firing rate variability increases when the number of 
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response alternatives increases, (Churchland et al. 2011; Churchland and Ditterich 2012). 

This is consistent with our hypothesis that the same neural constraints are responsible for 

the increase in planning noise that we observed when multiple plans are prepared 

simultaneously. 

We hypothesize that competition for resources among movement plans takes place in 

areas associated with movement preparation, such as the premotor cortex and posterior 

parietal cortex (PPC) (Roland et al. 1980; Snyder et al. 1997; Cui and Andersen 2007). 

Areas in the intraparietal sulcus and in the premotor cortex have been shown to represent 

actions independent of the effector that will execute the movement (Medendorp 2004; 

Gallivan et al. 2013), making them possible loci for competition between motor plans. Top-

down allocation of resources could reflect processing in a domain-general area such as 

prefrontal cortex. 

The results of Exp. 3 were especially interesting in showing that there was no difference 

in variability between early cue and late cue conditions when the target position was 

unknown before the imperative (Fig. 4). This result suggests that competition does not 

arise at the level of a general readiness to move. Instead, the precision benefit for planning 

a single movement appears to be present only when a specific movement can be 

prepared. However, the exact level of specification remains to be established: Resources 

might be distributed across high level representations of motor goals (Wong et al. 2014) 

or low level fully-specified movement trajectories (Cos et al. 2014; Gallivan et al. 2015). 

One might wonder why movements were not more variable in the conditions in which the 

target was presented late compared to when the target was specified early but the hand 

was specified late. In the former, it was not possible to plan anything before the imperative, 

whereas in the latter, there were two competing plans. We speculate that this is related to 
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the differences in response times, with movement initiation delayed until variance drops 

below a criterion value (Churchland et al. 2006b). 

Besides uncovering a precision related cost associated with concurrently planned 

movements, we also replicated the well-known response time related cost. Response time 

was aided by early specification of parameters of the movement. Responses were initiated 

sooner after the imperative in the early cue than in the late cue condition, and also sooner 

in the target presented early than late condition (Figs. 2b, 4b and 6b). This is in accordance 

with seminal studies showing that reaction times are faster if there are fewer possible 

targets, and if more information is specified before the imperative (Hick 1952; Goodman 

and Kelso 1980; Rosenbaum 1980). Identification of the side that the tone was coming 

from might have additionally affected the response times in the late cue condition. The 

relationship between the number of cues and reaction time has been formalized in a 

capacity-sharing model with similarities to a shared resource account (Pellizzer and 

Hedges 2003). 

In previous studies in which the target was specified only after the imperative, it has been 

reported that the movement initially follows a path that is the average of movement paths 

toward all of the possible targets (Chapman et al. 2010; Stewart et al. 2014). In our study, 

movement averaging could in theory have contributed to the observed variability in Exp. 

1. However, at odds with this hypothesis, movement biases were not affected by cue 

condition. It is also not consistent with the results of Exp. 2 where the difference between 

movement plans was based on the number of candidate hands (1 or 2) for the forthcoming 

response. 

In summary, we propose that the level of planning noise, manifest in the form of movement 

variability (Afshar and Shenoy 2006; Churchland et al. 2006a; van Beers 2009; 

Chaisanguanthum et al. 2014), is a function of the amount of resources dedicated to a 
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motor plan. Similar to working memory, resources may be allocated flexibly, depending 

on the number of alternative movement plans. Importantly, our results indicate a precision 

constraint on the ability to prepare multiple movements simultaneously. If too many 

movements are prepared at the same time, each representation will suffer from high levels 

of noise. Therefore, preparing a small number of plans at one time may be optimal for 

generating fast, accurate movements. 
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Figures 

 

Fig. 1. Experimental configurations. Start point(s) and possible target locations (30° arcs) 

in (a) Exp. 1, in which auditory cues indicate which of two targets (red) to reach to, and (b) 

Exps. 2 and 3, in which cues indicated the response hand. Timing for the two cueing 

conditions (c). In these examples the cue indicates a movement to the left target or with 

the left hand respectively. In the early cue condition (top) this information is provided at 

the time of the first tone (and coincides with target onset in Exp.1, 2 and the target 
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presented early condition in 3). In the late cue condition (bottom), this information is only 

provided at the onset of the imperative. In the target presented late condition in Exp.3 the 

target was presented at the same time as the imperative. 
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Fig. 2. Experiment 1: Effect of number of movement plans (within hand). Movement 

variability (a) and response times (b) for target cued early or late. Movement variability as 

a function of (c) response time and (d) peak speed for the different conditions. Error bars 

indicate ± 1 SE. 
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Fig. 3. Probability density distributions for direction error in Exp. 1 for early cue – no jump 

(a), late cue – no jump (b), early cue – jump (c) and late cue – jump (d) conditions. 

Direction errors to the right target are in dark grey and to the left target in light grey. 
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Fig. 4. Experiment 2:  Effect of number of movement plans between hands. Movement 

variability (a) and response times (b) for hand cued early or late. Movement variability as 

a function of (c) response time and (d) peak speed for the different conditions. 
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Fig. 5. Probability density distributions for direction error in Exp. 2 for early cue – no jump 

(a), late cue – no jump (b), early cue – jump (c) and late cue – jump (d) conditions. 

Direction errors with the right hand are in dark grey and with the left hand in light grey. 
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Fig. 6. Experiment 3: Effect of general preparedness. Movement variability (a) and 

response time (b) for Exp. 3A, in which there was no hand uncertainty because the hand 

was cued early (purple), and Exp. 3B, in which movements with both hands had to be 

prepared because the hand was cued late (orange). Filled bars indicate conditions in 

which there was no target uncertainty because the target was presented at the first tone 

(early), as in the no-jump condition of Exp. 2. Hatched bars indicate conditions in which 

the target was presented at the time of the imperative (late). 
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Table 

Table 1. Properties of the experiments. 

 What is 
cued? 

Timing 
cue 

Timing 
target(s) 

Target 
jumps 

Exp. 1 target early/late early 20% 
Exp. 2 hand early/late early 20% 
Exp. 3A hand early early/late no 
Exp. 3B hand late early/late no 

 


