584 research outputs found

    A Paris Law Based Mesh Independent Numerical Methodology for the Simulation of Fatigue Driven Delamination in Composites

    Get PDF
    Delamination evolution under cyclic loading is one of the most important research topics for the application of composite materials to aerospace, naval, automotive and, in general, transportation fields. Large experimental campaigns are needed to assess the fatigue behavior of Carbon Fiber Reinforced Polymers (CFRPs), which may result extremely time and cost consuming. Nevertheless, composite materials design needs to take into account the evolution of fatigue driven damage. Subsequently, the development of efficient and robust computational finite element methodologies to evaluate progression of delamination in composite structural components subjected to cyclic loading conditions has become relevant. In this paper, a numerical finite element procedure able to simulate the fatigue driven delamination growth is introduced. A Paris-law based cycle jump strategy, combined with the Virtual Crack Closure Technique (VCCT) approach, has been implemented in the commercial Finite Element Code ANSYS MECHANICAL via the Ansys Parametric Design Language (APDL). The main advantages of the proposed numerical procedure, named FT-SMXB, are related to its independence on the time step and element size in the frame of incremental analyses. The procedure has been preliminary validated, in this research study, at coupon level, by comparing the numerical results to literature experimental data on a unidirectional graphite/epoxy Double Cantilever Beam (DCB) specimen. The significant agreement between the obtained numerical results and the literature experimental benchmark data confirms the accuracy and the potential of the proposed methodology

    Investigating the Thermo-Mechanical Behavior of a Ceramic Matrix Composite Wing Leading Edge by Sub-Modeling Based Numerical Analyses

    Get PDF
    The thermo-structural design of the wing leading edge of hypersonic vehicles is a very challenging task as high gradients in thermal field, and hence high thermal stresses, are expected. Indeed, when employing passive hot structures based thermal protection systems, very high temperatures (e.g., 1400 °C) are expected on the external surface of the wing leading edge, while the internal structural components are required to not exceed a few hundred degrees Celsius (e.g., 400 °C) at the interface with the internal cold structure. Hence, ceramic matrix composites (CMC) are usually adopted for the manufacturing of the external surface of the wing leading edge since they are characterized by good mechanical properties at very high temperatures (up to 1900 °C) together with an excellent thermal shock resistance. Furthermore, the orthotropic behavior of these materials together with the possibility to tailor their lamination sequence to minimize the heat transferred to internal components, make them very attractive for hot structure based thermal protection systems applications. However, the numerical predictions of the thermo-mechanical behavior of such materials, taking into account the influence of each ply (whose thickness generally ranges between 0.2 and 0.3 mm), can be very expensive from a computational point of view. To overcome this limitation, usually, sub-models are adopted, able to focus on specific and critical areas of the structure where very detailed thermo-mechanical analyses can be performed without significantly affecting the computational efficiency of the global model. In the present work, sub-modeling numerical approaches have been adopted for the analysis of the thermo-mechanical behavior of a ceramic matrix composite wing leading edge of a hypersonic vehicle. The main aim is to investigate the feasibility, in terms of computational efficiency and accuracy of results, in using sub-models for dimensioning complex ceramic matrix components. Hence, a comprehensive study on the size of sub-models and on the choice of their boundaries has been carried out in order to assess the advantages and the limitations in approximating the thermo-mechanical behavior of the investigated global ceramic matrix composite component

    Identification of surgically-induced longitudinal lesions of the equine deep digital flexor tendon in the digital flexor tendon sheath using contrast-enhanced ultrasonography: an ex-vivo pilot study

    Get PDF
    BACKGROUND: Longitudinal tears in the lateral aspect of the deep digital flexor tendon are the most common causes of pain localised to the equine digital flexor tendon sheath. However conventional ultrasonographic techniques provide limited information about acute lesions. Ultrasonographic contrast agents are newly developed materials that have contributed to advancement in human diagnostic imaging. They are currently approved for intravenous use in human and animal models. In this study we described intrathecal use in the horse. This study was undertaken to evaluate the reliability of standard and angle contrast-enhanced ultrasonography to detect and characterize surgically-induced longitudinal lesions in the deep digital flexor tendons. In this pilot study surgically-induced lesions were created in the lateral aspect of the deep digital flexor tendon within the digital flexor tendon sheath in 10 isolated equine limbs to generate a replicable model for naturally occurring lesions. Another 10 specimens were sham operated. All the limbs were examined ultrasonographically before and shortly after the intrasynovial injection of an ultrasound contrast agent containing stabilised microbubbles. The images were blindly evaluated to detect the ability to identify surgically-created lesions. The deep digital flexor tendons were dissected and a series of slices were obtained. The depth of longitudinal defects identified with contrast-enhanced ultrasound scans was compared to the real extent of the lesions measured in the corresponding gross tendon sections. RESULTS: Contrast-enhanced ultrasonography with both angle and standard approach provided a significant higher proportion of correct diagnoses compared to standard and angle contrast ultrasonography (p < 0.01). Contrast-enhanced ultrasonography reliably estimated the depth of surgically-induced longitudinal lesions in the deep digital flexor tendons. CONCLUSION: Contrast-enhanced ultrasound of the digital flexor tendon sheath could be an effective tool to detect intrasynovial longitudinal tears of the deep digital flexor tendon, although an in vivo study is required to confirm these results for naturally occurring lesions

    Face Authentication using Speed Fractal Technique

    Get PDF
    In this paper, a new fractal based recognition method, Face Authentication using Speed Fractal Technique (FAST), is presented. The main contribution is the good compromise between memory requirements, execution time and recognition ratio. FAST is based on Iterated Function Systems (IFS) theory, largely studied in still image compression and indexing, but not yet widely used for face recognition. Indeed, Fractals are well known to be invariant to a large set of global transformations. FAST is robust with respect to meaningful variations in facial expression and to the small changes of illumination and pose. Another advantage of the FAST strategy consists in the speed up that it introduces. The typical slowness of fractal image compression is avoided by exploiting only the indexing phase, which requires time O(D log (D)), where D is the size of the domain pool. Lastly, the FAST algorithm compares well to a large set of other recognition methods, as underlined in the experimental results

    BIRD: Watershed Based IRis Detection for mobile devices

    Get PDF
    Communications with a central iris database system using common wireless technologies, such as tablets and smartphones, and iris acquisition out of the field are important functionalities and capabilities of a mobile iris identification device. However, when images are acquired by means of mobile devices under uncontrolled acquisition conditions, noisy images are produced and the effectiveness of the iris recognition system is significantly conditioned. This paper proposes a technique based on watershed transform for iris detection in noisy images captured by mobile devices. The method exploits the information related to limbus to segment the periocular region and merges its score with the iris' one to achieve greater accuracy in the recognition phase

    Medial Sural Perforator "Nerve through Flap": Anatomical Study and Clinical Application

    Get PDF
    Background: Nerve recovery after a complex trauma is affected by many factors and a poorly vascularized bed is often the cause of failure and perineural scar. Many techniques have been devised to avoid this problem and the possibility to transfer a nerve with a surrounding viable sliding tissue could help in this purpose; Methods: We performed an anatomic study on 8 injected specimens to investigate the possibility to raise a medial sural artery perforator (MSAP) flap including the sural nerve within its vascularized sheath; Results: In anatomic specimens, a visible direct nerve vascularization was present in 57% of legs (8 out of 14). In 43% a vascular network was visible in the fascia layer. There were no vascular anomalies. In one patient the MSAP flap was raised including the sural nerve with its proximal tibial and peroneal components within the deep sheath. The tibial and peroneal component of the sural nerve were anastomized independently with the common digital nerve of 4th and 5th fingers and with the collateral nerve for the ulnar aspect of the 5th. After 9 months, the patient showed an improving nerve function both clinically and electromyographically without any problem due to nerve adherence; Conclusions: Given the still debated advantage of a vascularized nerve graft versus a non-vascularized one, this flap could be useful in those cases of composite wounds with nerve lesions acting as a "nerve through flap", in order to reduce nerve adherence with a viable surrounding gliding tissue

    Ricerca sapienza. dal passato nel futuro

    Get PDF
    Il repertorio più aggiornato dei principali progetti di ricerca di Sapienza Università di Roma in tutti gli ambiti dello scibile umano: dalla storia antica all'astronautica, dalla medicina alla paleontologia, dall'informatica alle scienze umane, aggiornato alla fine del 2015. Ogni ricerca è illustrata attraverso un'intervista al docente responsabile del team, corredata di foto inedite e grafici esplicativi ed arricchita da un'ampia bibliografia
    • …
    corecore