115 research outputs found

    Extrapolated shock fitting for two-dimensional flows on structured grids

    Get PDF
    Over the years the development of structured-grid shock-fitting techniques faced two main problems: the handling of a moving discontinuity on a fixed background grid and the capability of simulating complex flow configurations. In the proposed work, the authors present a new shock-fitting technique for structured-grid solvers that is capable of overcoming the limitations that affected the different approaches originally developed. The technique presented here removes the tight link between grid topology and shock topology, which characterizes previous shock fitting as well as front tracking methods. This significantly simplifies their implementation and more importantly reduces the computational overhead related to these geometrical manipulations. Interacting discontinuities and shocks interacting with a solid boundary are discussed and analyzed. Finally, a quantitative investigation of the error reduction obtained with the approach proposed via a global grid convergence analysis is presented

    Numerical Investigation of the Failure Phenomena in Adhesively Bonded Joints by Means of a Multi-Linear Equivalent Plastic Stress/Strain Approach

    Get PDF
    Abstract In this work, a multi-linear material model for elastic-plastic response of ductile adhesives is proposed. Indeed, the proposed formulation allows to evaluate equivalent stress and strains to be used as material model input in FE commercial codes instead of the classical true stress and true strains. The presented model, which is capable to simulate the plasticity related phenomena and the failure event, has been implemented in the FEM code ABAQUS and used to numerically simulate the mechanical behaviour of adhesively bonded joints in traction. Several joints configurations have been considered with ductile, fragile and mix adhesives' behaviour to test the effectiveness and the range of applicability of the proposed model. Encouraging comparisons with literature experimental data demonstrates the added value of the suggested material model in predicting the failure of adhesively bonded joints

    Hypersensitivity in molar incisor hypomineralization: Superficial infiltration treatment

    Get PDF
    To date, there are no standardized protocols available in the literature for hypersensitivity treatment in molar incisor hypomineralization (MIH) patients. The aim of this study was to evaluate the efficacy of erosion\u2013infiltration treatments with resin in children with a strong hypersensitivity and also to develop a minimally invasive diagnostic\u2013therapeutic pathway for young MIH patients. Patients with clinical signs of MIH were enrolled according to international guidelines. A total of 42 patients (8\u201314 years old) with sensitivity of at least one molar and patients with post eruptive enamel fractures, but without dentin involvement or cavitated carious lesions were selected. A single superficial infiltration treatment with ICON (DMG, Germany) was performed with a modified etching technique. Sensitivity was tested with the Schiff Scale and Wong Baker Face Scale and was repeated at 12 months follow\u2010up. All patients reported lower sensitivity values at the end of the treatment. Significant differences of sensitivity according to the Schiff scale were reported between T0 and all subsequent follow\u2010ups, p < 0.05. The treatment of erosion infiltration with ICON resin is a minimally invasive preventive treatment that significantly improves the problem of hypersensitivity in permanent molars with MIH

    DC Multibus based on a Single-Star Bridge Cells Modular Multilevel Cascade Converter for DC smart grids

    Get PDF
    In the last years a growing interest towards DC Smart Grids has been registered due to high penetration of distributed generation systems with embedded storage. Trying to foresee the possible future scenarios of the power systems, it can be noticed that DC Smart Grids can be even preferable to AC Smart Grids in terms of flexibility and redundancy since they are compatible with the achievement of a DC Multibus working at different voltage levels. In this paper the Single-Star Bridge Cells Modular Multilevel Cascade Converter is used to create a DC Multibus. The performances of the system are analyzed considering different load configurations and coexistence of different voltage levels of the buses forming the DC Multibus. Results confirms the validity of the proposed solution and the robustness of the control system in case of load variations

    A new well-balanced non-oscillatory central scheme for the shallow water equations on rectangular meshes

    Full text link
    This paper is concerned with the development of high-order well-balanced central schemes to solve the shallow water equations in two spatial dimensions. A Runge Kutta scheme is applied for time discretization. A Gaussian quadrature rule is used to evaluate time integrals and a three-degree polynomial which calculates point-values or flux values. A new procedure has been defined to evaluate the flux integrals and to approach the 2D source term integrals in order to verify the exact C-property, using the water surface elevation instead of the water depth as a variable. Numerical experiments have confirmed the high-resolution properties of our numerical scheme in 2D test problems.This work was partially funded by the "Programa de Apoyo a la Investigacion y Desarrollo" (PAID-06-10) and (PAID-05-12) of the Universidad Politecnica de Valencia. Angel Balaguer-Beser thanks the support of the Spanish Ministry of Education and Science in the framework of the Projects CGL2009-14220-C02-01 and CGL2010-19591. The authors express their gratitude to the anonymous reviewers for their helpful comments.Capilla Romá, MT.; Balaguer Beser, ÁA. (2013). A new well-balanced non-oscillatory central scheme for the shallow water equations on rectangular meshes. Journal of Computational and Applied Mathematics. 252:62-74. https://doi.org/10.1016/j.cam.2013.01.014S627425

    PARP9 and PARP14 cross-regulate macrophage activation via STAT1 ADP-ribosylation

    Get PDF
    Despite the global impact of macrophage activation in vascular disease, the underlying mechanisms remain obscure. Here we show, with global proteomic analysis of macrophage cell lines treated with either IFNγ or IL-4, that PARP9 and PARP14 regulate macrophage activation. In primary macrophages, PARP9 and PARP14 have opposing roles in macrophage activation. PARP14 silencing induces pro-inflammatory genes and STAT1 phosphorylation in M(IFNγ) cells, whereas it suppresses anti-inflammatory gene expression and STAT6 phosphorylation in M(IL-4) cells. PARP9 silencing suppresses pro-inflammatory genes and STAT1 phosphorylation in M(IFNγ) cells. PARP14 induces ADP-ribosylation of STAT1, which is suppressed by PARP9. Mutations at these ADP-ribosylation sites lead to increased phosphorylation. Network analysis links PARP9–PARP14 with human coronary artery disease. PARP14 deficiency in haematopoietic cells accelerates the development and inflammatory burden of acute and chronic arterial lesions in mice. These findings suggest that PARP9 and PARP14 cross-regulate macrophage activation

    Insights from Modeling the 3D Structure of New Delhi Metallo-β-Lactamse and Its Binding Interactions with Antibiotic Drugs

    Get PDF
    New Delhi metallo-beta-lactamase (NDM-1) is an enzyme that makes bacteria resistant to a broad range of beta-lactam antibiotic drugs. This is because it can inactivate most beta-lactam antibiotic drugs by hydrolyzing them. For in-depth understanding of the hydrolysis mechanism, the three-dimensional structure of NDM-1 was developed. With such a structural frame, two enzyme-ligand complexes were derived by respectively docking Imipenem and Meropenem (two typical beta-lactam antibiotic drugs) to the NDM-1 receptor. It was revealed from the NDM-1/Imipenem complex that the antibiotic drug was hydrolyzed while sitting in a binding pocket of NDM-1 formed by nine residues. And for the case of NDM-1/Meropenem complex, the antibiotic drug was hydrolyzed in a binding pocket formed by twelve residues. All these constituent residues of the two binding pockets were explicitly defined and graphically labeled. It is anticipated that the findings reported here may provide useful insights for developing new antibiotic drugs to overcome the resistance problem

    A Comparative Study on the Nonlinear Interaction Between a Focusing Wave and Cylinder Using State-of-the-art Solvers: Part A

    Get PDF
    This paper presents ISOPE’s 2020 comparative study on the interaction between focused waves and a fixed cylinder. The paper discusses the qualitative and quantitative comparisons between 20 different numerical solvers from various universities across the world for a fixed cylinder. The moving cylinder cases are reported in a companion paper as part B (Agarwal, Saincher, et al., 2021). The numerical solvers presented in this paper are the recent state of the art in the field, mostly developed in-house by various academic institutes. The majority of the participants used hybrid modeling (i.e., a combination of potential flow and Navier–Stokes solvers). The qualitative comparisons based on the wave probe and pressure probe time histories and spectral components between laminar, turbulent, and potential flow solvers are presented in this paper. Furthermore, the quantitative error analyses based on the overall relative error in peak and phase shifts in the wave probe and pressure probe of all the 20 different solvers are reported. The quantitative errors with respect to different spectral component energy levels (i.e., in primary, sub-, and superharmonic regions) capturing capability are reported. Thus, the paper discusses the maximum, minimum, and median relative errors present in recent solvers as regards application to industrial problems rather than attempting to find the best solver. Furthermore, recommendations are drawn based on the analysis
    corecore