36 research outputs found

    A prática docente e discente da atividade do projeto integrado - uma experiência do curso de design de produto

    Get PDF
    El objetivo de este artículo es relatar la fundamentación y experiencia del Proyecto Integrado - PI, una actividad que fue implementada hace cuatro años en el Curso de Diseño de la Universidad Presbiteriana Mackenzie situado en la ciudad de São Paulo, Brasil. La naturaleza del proyecto integrado es interdisciplinar, así como el propio concepto de diseño; la actividad destaca la integración de los contenidos desarrollados en las distintas disciplinas que contemplan el PI, y que juntas auxilian en el proceso de conocimiento y su aplicación por los alumnos del curso de diseño de producto

    Induced pluripotent stem cells line (UNIPDi003-A) from a patient affected by EEC syndrome carrying the R279H mutation in TP63 gene.

    Get PDF
    Abstract Oral mucosa epithelial stem cells from a patient affected by Ectrodactyly-Ectodermal dysplasia-Clefting (EEC) syndrome carrying the R279H mutation in the TP63 gene were reprogrammed into human induced pluripotent stem cells (hiPSCs) with episomal vectors. The generated UNIPDi003-A-hPSC line retained the mutation of the parental cells and showed a normal karyotype upon long term culture. Analysis of residual transgenes expression showed that the episomal vectors were eliminated from the cell line. UNIPDi003-A-hiPSCs expressed the undifferentiated state marker alkaline phosphatase along with a panel of pluripotency markers, and formed embryoid bodies capable of expressing markers belonging to all the three germ layers

    Generation of a transgene-free induced pluripotent stem cells line (UNIPDi002-A) from oral mucosa epithelial stem cells carrying the R304Q mutation in TP63 gene.

    Get PDF
    Abstract Transgene free UNIPDi002-A-human induced pluripotent stem cell (hiPSC) line was generated by Sendai Virus Vectors reprogramming from human oral mucosal epithelial stem cells (hOMESCs) of a patient affected by ectrodactyly-ectodermal dysplasia-clefting (EEC)-syndrome, carrying a mutation in exon 8 of the TP63 gene (R304Q). The UNIPDi002-A-hiPSC line retained the mutation of the parental R304Q-hOMESCs and displayed a normal karyotype. No residual expression of transgenes nor Sendai virus vector sequences were detected in the line at passage 8. UNIPDi002-A-hiPSC expressed a panel of pluripotency-associated markers and could form embryoid bodies expressing markers belonging to the three germ layers ectoderm, endoderm and mesoderm

    Uma trajetória do design paulistano: os 40 anos de ensino do curso de design da Universidade Presbiteriana Mackenzie

    Get PDF
    En 2011 el curso de diseño de UPM cumplió 40 años. Con la idea de documentar esta trayectoria, el grupo de investigación rescató esta historia documentada y contada por sus interlocutores. Considerado como uno de los más tradicionales de la ciudad de San Pablo, el curso siguió las transformaciones económicas, sociales y culturales de la ciudad y del país. Debido a su diversidad de conocimiento avalado por la facultad con otras áreas relacionadas, tales como artes visuales, arquitectura y la comunicación fue posible mantener una enseñanza más allá del modelo preestablecido y contribuir a la difusión de la cultura del diseño

    Clinical and virological findings in patients with Usutu virus infection, northern Italy, 2018

    Get PDF
    Background Usutu virus (USUV) is a mosquito-borne flavivirus, which shares its transmission cycle with the phylogenetically related West Nile virus (WNV). USUV circulates in several European countries and its activity has increased over the last 5 years. Aim To describe human cases of USUV infection identified by surveillance for WNV and USUV infection in the Veneto Region of northern Italy in 2018. Methods From 1 June to 30 November 2018, all cases of suspected autochthonous arbovirus infection and blood donors who had a reactive WNV nucleic acid test were investigated for both WNV and USUV infection by in-house molecular methods. Anti-WNV and anti-USUV IgM and IgG antibodies were detected by ELISA and in-house immunofluorescence assay, respectively; positive serum samples were further tested by WNV and USUV neutralisation assays run in parallel. Results Eight cases of USUV infection (one with neuroinvasive disease, six with fever and one viraemic blood donor who developed arthralgia and myalgia) and 427 cases of WNV infection were identified. A remarkable finding of this study was the persistence of USUV RNA in the blood and urine of three patients during follow-up. USUV genome sequences from two patients shared over 99% nt identity with USUV sequences detected in mosquito pools from the same area and clustered within lineage Europe 2. Conclusions Clinical presentation and laboratory findings in patients with USUV infection were similar to those found in patients with WNV infection. Cross-reactivity of serology and molecular tests challenged the differential diagnosis

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    In vitro modelling of patient-specific susceptibility to neurotropic flavivirus infection by using induced pluripotent stem cells

    No full text
    Background: A characteristic feature of many infections is that only a portion of exposed individuals develop clinical disease. These include mosquito-borne flaviviruses such as West Nile virus (WNV), Zika virus (ZIKV) and Usutu virus (USUV) infections, which generally cause mild illness or asymptomatic infections in humans. Nonetheless, WNV can cause serious neuroinvasive diseases in less than 1% of infected patients, mainly elderly and immunocompromised subjects; ZIKV may cause fetal microcephaly in about 5% of infections acquired during pregnancy and 1 in 10,000 infected adults develop Guillain-Barré syndrome; USUV seems less pathogenic than WNV and most human infections described so far were asymptomatic, with rare cases of encephalitis or meningitis. Aim of the study: The different infection outcomes or progression to severe disease can be partly explained by host genetic variations, but the genetic traits associated with susceptibly to severe infection remain poorly understood. Aim of this study was to develop a patient-specific in vitro platform, based on human induced pluripotent stem cells (hiPSCs), to investigate the mechanisms of variations in human susceptibility to severe flavivirus infection. Methods: iPSCs were generated from erythroblasts of two blood donors with asymptomatic WNV infection (controls) and from two patients who developed WNV encephalitis but had no co-morbidity or other risk factors (cases). Patient-specific iPSCs were differentiated into neural stem cells (NSCs) and infected with WNV lineage 1 (GU011992), ZIKV Asian lineage (KU853013), and USUV lineage Europe 1 (AY453411) at different MOIs. Time course experiments were performed to evaluate viral replication kinetics in infected NSCs, cell viability and cell death following infection, and expression of genes involved in antiviral innate immunity. Next-generation sequencing of 2,600 genes related to immune system in iPSCs of cases and controls was performed to detects mutations potentially associated with increased susceptibility to neuroinvasive disease. Results: USUV and WNV replicated more efficiently, yielding 10 and 100-fold higher viral load and inducing 40% and 70% higher cell mortality, respectively, in NSCs derived from cases than in NSCs derived from controls. WNV induced 3-fold higher caspase 3 activity in infected NSC derived from encephalitis patients than in NSCs derived from asymptomatic donors. Several genes involved in the antiviral IFN pathway were significantly upregulated after USUV, ZIKV and WNV infection (in particular, type 3 IFNs genes), but the general trend indicated an attenuated response in NSCs derived from WNV encephalitis cases, which showed significantly lower mRNA levels of IFN pathway regulators such as TLR3, MAVS and IRF7. Exome sequencing analysis identified heterozygous inactivating mutations in the PSIP1 and DDX58 genes of cases, but not in controls, as polymorphism in other genes that could play a role in disease susceptibility. Conclusions: Patient-specific iPSCs are useful tools to model individual susceptibility to viral infectious diseases and allowed to demonstrate that WNV and USUV and, to a lesser extent, ZIKV, replicated more efficiently and induced more cell death and apoptosis in NSCs derived from patients with WNV encephalitis than in cells derived from blood donors with asymptomatic infection. This increased susceptibility to neurotropic flaviviruses was associated with a significantly attenuated innate antiviral response. Exome sequencing revealed inactivating mutations in genes that represent good candidates for further investigation

    SARS-CoV-2 Infection and Disease Modelling Using Stem Cell Technology and Organoids

    No full text
    In this Review, we briefly describe the basic virology and pathogenesis of SARS-CoV-2, highlighting how stem cell technology and organoids can contribute to the understanding of SARS-CoV-2 cell tropisms and the mechanism of disease in the human host, supporting and clarifying findings from clinical studies in infected individuals. We summarize here the results of studies, which used these technologies to investigate SARS-CoV-2 pathogenesis in different organs. Studies with in vitro models of lung epithelia showed that alveolar epithelial type II cells, but not differentiated lung alveolar epithelial type I cells, are key targets of SARS-CoV-2, which triggers cell apoptosis and inflammation, while impairing surfactant production. Experiments with human small intestinal organoids and colonic organoids showed that the gastrointestinal tract is another relevant target for SARS-CoV-2. The virus can infect and replicate in enterocytes and cholangiocytes, inducing cell damage and inflammation. Direct viral damage was also demonstrated in in vitro models of human cardiomyocytes and choroid plexus epithelial cells. At variance, endothelial cells and neurons are poorly susceptible to viral infection, thus supporting the hypothesis that neurological symptoms and vascular damage result from the indirect effects of systemic inflammatory and immunological hyper-responses to SARS-CoV-2 infection

    SARS-CoV-2 Infection and Disease Modelling Using Stem Cell Technology and Organoids

    No full text
    In this Review, we briefly describe the basic virology and pathogenesis of SARS-CoV-2, highlighting how stem cell technology and organoids can contribute to the understanding of SARS-CoV-2 cell tropisms and the mechanism of disease in the human host, supporting and clarifying findings from clinical studies in infected individuals. We summarize here the results of studies, which used these technologies to investigate SARS-CoV-2 pathogenesis in different organs. Studies with in vitro models of lung epithelia showed that alveolar epithelial type II cells, but not differentiated lung alveolar epithelial type I cells, are key targets of SARS-CoV-2, which triggers cell apoptosis and inflammation, while impairing surfactant production. Experiments with human small intestinal organoids and colonic organoids showed that the gastrointestinal tract is another relevant target for SARS-CoV-2. The virus can infect and replicate in enterocytes and cholangiocytes, inducing cell damage and inflammation. Direct viral damage was also demonstrated in in vitro models of human cardiomyocytes and choroid plexus epithelial cells. At variance, endothelial cells and neurons are poorly susceptible to viral infection, thus supporting the hypothesis that neurological symptoms and vascular damage result from the indirect effects of systemic inflammatory and immunological hyper-responses to SARS-CoV-2 infection

    In silico approaches to Zika virus drug discovery

    No full text
    After the WHO declared Zika virus (ZIKV) as a public health emergency of international concern, intense research for the development of vaccines and drugs has been undertaken, leading to the development of several candidates. Areas covered: This review discusses the developments achieved so far by computational methods in the discovery of candidate compounds targeting ZIKV proteins, i.e. the envelope and capsid structural proteins, the NS3 helicase/protease, and the NS5 methyltransferase/RNA-dependent RNA polymerase. Expert opinion: Research for effective drugs against ZIKV is still in a very early discovery phase. Notwithstanding the intense efforts for the development of new drugs and the identification of several promising candidates by using different approaches, including computational methods, so far only a few candidates have been experimentally tested. An important caveat of anti-flavivirus drug development is represented by the difficult of reproducing the in vivo microenvironment of the replication complex, which may lead to discrepancies between in vitro results and experimental evaluation in vivo. Moreover, anti-ZIKV drugs have the additional requirement of an excellent safety profile in pregnancy and ability to diffuse to different tissues, including the central nervous system, the testis, and the placenta
    corecore