515 research outputs found

    VO2: A Novel View from Band Theory

    Get PDF
    New calculations for vanadium dioxide, one of the most controversely discussed materials for decades, reveal that band theory as based on density functional theory is well capable of correctly describing the electronic and magnetic properties of the metallic as well as both the insulating M1 and M2 phases. Considerable progress in the understanding of the physics of VO2 is achieved by the use of the recently developed hybrid functionals, which include part of the electron-electron interaction exactly and thereby improve on the weaknesses of semilocal exchange functionals as provided by the local density and generalized gradient approximations. Much better agreement with photoemission data as compared to previous calculations is found and a consistent description of the rutile-type early transition-metal dioxides is achieved.Comment: 5 pages, 4 figure

    Near Field Optical Microscopy Characterization of IC Metrology

    Get PDF
    Images of a microlithographic sample obtained using a new near field scanning optical microscope (NSOM) that uses force regulation of the sample-tip separation are presented. The NSOM is a research instrument fitted with a metal covered glass tip probe that defines a small aperture at the sharp end. The aperture is estimated to be on the order of 100 nanometers in diameter resulting in a resolution exceeding that of diffraction limited systems. This form of microscopy can be done both in the transmission and the reflection modes. The force regulation mechanism produces a simultaneously obtained scanned force microscope (SFM) image of the topography thus permitting correlative imaging of the sample. The samples are imaged in transmission and reflection near field optical format, with white light and with coherent light. The results are compared with other forms of IC imaging and characterization, namely scanned force microscopy (SFM) and scanning electron microscopy (SEM)

    Chemical defense of Hymeniacidon heliophila (Porifera: halichondrida) against tropical predators

    Get PDF
    Diversos organismos bênticos possuem defesas químicas que ajudam a diminuir a predação. Embora sua eficácia seja comprovada, muitos de seus efeitos são ainda desconhecidos. Múltiplas funções dos metabolitos secundários foram evidenciadas em algumas esponjas e isso pode representar uma vantagem adaptativa, considerando o alto valor energético gasto pelas espécies para produzí-los. O objetivo desse trabalho foi investigar as propriedades defensivas de extratos da esponja Hymeniacidon heliophila contra predadores tropicais: paguros (Calcinus tibicens), ouriços-do-mar (Lytechinus variegatus) e peixes generalistas. Extratos em n-hexano, acetato de etila e acetona/metanol foram usados nos ensaios e todos foram eficientes na redução do consumo por C. tibicen; extratos em n-hexano reduziram o consumo por L. variegatus; e extratos de média polaridade reduziram o consumo por peixes. A variação na ação ou as funções ecológicas múltiplas dos extratos indicam que diferentes tipos de substâncias podem ser associadas ao sistema defensivo produzido por Hymeniacidon heliophila.Various benthic organisms have chemical defenses which reduce their predators' consumption. Although their efficiency may be noticed in many organisms, many of their effects are not well- known yet. Multiple ecological roles of secondary metabolites are shown in some sponges, which may represent an adaptative advantage considering the high amount of energy used to produce these chemical compounds. The goal of this work was to investigate the defensive property of the extracts from the sponge Hymeniacidon heliophila against the tropical predators: hermit crabs (Calcinus tibicens), sea urchins (Lytechinus variegatus) and generalist fishes. Extracts obtained with n-hexane, ethyl acetate and acetone/methanol were used in assays and all of them were effective in reducing the consumption by C. tibicens; n-hexane extract reduced the consumption by L. variegatus; and medium polarity extracts reduced fish consumption. Either the variation in action or the multiple ecological roles of the extracts indicates that different types of compounds can be associated to the defensive system produced by H. heliophila

    Nontangential limits and Fatou-type theorems on post-critically finite self-similar sets

    Full text link
    In this paper we study the boundary limit properties of harmonic functions on R+×K\mathbb R_+\times K, the solutions u(t,x)u(t,x) to the Poisson equation 2ut2+Δu=0, \frac{\partial^2 u}{\partial t^2} + \Delta u = 0, where KK is a p.c.f. set and Δ\Delta its Laplacian given by a regular harmonic structure. In particular, we prove the existence of nontangential limits of the corresponding Poisson integrals, and the analogous results of the classical Fatou theorems for bounded and nontangentially bounded harmonic functions.Comment: 22 page

    Predicting the distribution of canine leishmaniasis in western Europe based on environmental variables.

    Get PDF
    The domestic dog is the reservoir host of Leishmania infantum, the causative agent of zoonotic visceral leishmaniasis endemic in Mediterranean Europe. Targeted control requires predictive risk maps of canine leishmaniasis (CanL), which are now explored. We databased 2187 published and unpublished surveys of CanL in southern Europe. A total of 947 western surveys met inclusion criteria for analysis, including serological identification of infection (504, 369 dogs tested 1971-2006). Seroprevalence was 23 2% overall (median 10%). Logistic regression models within a GIS framework identified the main environmental predictors of CanL seroprevalence in Portugal, Spain, France and Italy, or in France alone. A 10-fold cross-validation approach determined model capacity to predict point-values of seroprevalence and the correct seroprevalence class (20%). Both the four-country and France-only models performed reasonably well for predicting correctly the 20% seroprevalence classes (AUC >0 70). However, the France-only model performed much better for France than the four-country model. The four-country model adequately predicted regions of CanL emergence in northern Italy (<5% seroprevalence). Both models poorly predicted intermediate point seroprevalences (5-20%) within regional foci, because surveys were biased towards known rural foci and Mediterranean bioclimates. Our recommendations for standardizing surveys would permit higher-resolution risk mapping

    Three dimensional reconstruction to visualize atrial fibrillation activation patterns on curved atrial geometry

    Get PDF
    Background: The rotational activation created by spiral waves may be a mechanism for atrial fibrillation (AF), yet it is unclear how activation patterns obtained from endocardial baskets are influenced by the 3D geometric curvature of the atrium or 'unfolding' into 2D maps. We develop algorithms that can visualize spiral waves and their tip locations on curved atrial geometries. We use these algorithms to quantify differences in AF maps and spiral tip locations between 3D basket reconstructions, projection onto 3D anatomical shells and unfolded 2D surfaces. Methods: We tested our algorithms in N = 20 patients in whom AF was recorded from 64-pole baskets (Abbott, CA). Phase maps were generated by non-proprietary software to identify the tips of spiral waves, indicated by phase singularities. The number and density of spiral tips were compared in patient-specific 3D shells constructed from the basket, as well as 3D maps from clinical electroanatomic mapping systems and 2D maps. Results: Patients (59.4±12.7 yrs, 60% M) showed 1.7±0.8 phase singularities/patient, in whom ablation terminated AF in 11/20 patients (55%). There was no difference in the location of phase singularities, between 3D curved surfaces and 2D unfolded surfaces, with a median correlation coefficient between phase singularity density maps of 0.985 (0.978-0.990). No significant impact was noted by phase singularities location in more curved regions or relative to the basket location (p>0.1). Conclusions: AF maps and phase singularities mapped by endocardial baskets are qualitatively and quantitatively similar whether calculated by 3D phase maps on patient-specific curved atrial geometries or in 2D. Phase maps on patient-specific geometries may be easier to interpret relative to critical structures for ablation planning

    Vegetation and the importance of insecticide-treated target siting for control of Glossina fuscipes fuscipes

    Get PDF
    Control of tsetse flies using insecticide-treated targets is often hampered by vegetation re-growth and encroachment which obscures a target and renders it less effective. Potentially this is of particular concern for the newly developed small targets (0.25 high × 0.5 m wide) which show promise for cost-efficient control of Palpalis group tsetse flies. Consequently the performance of a small target was investigated for Glossina fuscipes fuscipes in Kenya, when the target was obscured following the placement of vegetation to simulate various degrees of natural bush encroachment. Catches decreased significantly only when the target was obscured by more than 80%. Even if a small target is underneath a very low overhanging bush (0.5 m above ground), the numbers of G. f. fuscipes decreased by only about 30% compared to a target in the open. We show that the efficiency of the small targets, even in small (1 m diameter) clearings, is largely uncompromised by vegetation re-growth because G. f. fuscipes readily enter between and under vegetation. The essential characteristic is that there should be some openings between vegetation. This implies that for this important vector of HAT, and possibly other Palpalis group flies, a smaller initial clearance zone around targets can be made and longer interval between site maintenance visits is possible both of which will result in cost savings for large scale operations. We also investigated and discuss other site features e.g. large solid objects and position in relation to the water's edge in terms of the efficacy of the small targets

    A paradigm-shift in water treatment: in-reservoir UV-LED-driven TiO2 photocatalysis for the removal of cyanobacteria: a mesocosm study.

    Get PDF
    Potentially harmful cyanobacteria challenge potable water treatment globally, with high biomass events, and dissolved toxic and nuisance metabolites. Retrofitting existing water treatment infrastructure is often impractical (if not impossible) and often prohibitively expensive. In a paradigm-shifting move, we propose in-reservoir pre-treatment of cyanobacteria-contaminated raw waters to ease the burden on existing water treatment infrastructure. In an iterative design approach over three years, treatment modules have been designed, refined and optimised, in bench and pilot-scale studies for in-reservoir deployment. TiO2-coated beads made from recycled glass are employed in conjunction with UV-light emitting diodes (LEDs), to create highly reactive hydroxyl radicals that preferably remove cyanobacteria and subsequently released cyanotoxins from raw water. In a mesocosm study using a drinking water reservoir in Brazil, water quality parameters were markedly improved within 72h of deployment and cyanobacterial presence was decreased by over 90% without affecting other phytoplankton communities. The treatment system is virtually plastic-free, low cost, utilises recycled materials and could ultimately be powered by renewable energies, thus providing a true green treatment option. We have conclusively demonstrated that a paradigm-shift towards in-reservoir treatment is not only possible but feasible and can provide a valuable addition to conventional water treatment methods
    corecore