21 research outputs found

    Water masses as a unifying framework for understanding the Southern Ocean Carbon Cycle

    Get PDF
    International audienceThe scientific motivation for this study is to understand the processes in the ocean interior controlling carbon transfer across 30° S. To address this, we have developed a unified framework for understanding the interplay between physical drivers such as buoyancy fluxes and ocean mixing, and carbon-specific processes such as biology, gas exchange and carbon mixing. Given the importance of density in determining the ocean interior structure and circulation, the framework is one that is organized by density and water masses, and it makes combined use of Eulerian and Lagrangian diagnostics. This is achieved through application to a global ice-ocean circulation model and an ocean biogeochemistry model, with both components being part of the widely-used IPSL coupled ocean/atmosphere/carbon cycle model. Our main new result is the dominance of the overturning circulation (identified by water masses) in setting the vertical distribution of carbon transport from the Southern Ocean towards the global ocean. A net contrast emerges between the role of Subantarctic Mode Water (SAMW), associated with large northward transport and ingassing, and Antarctic Intermediate Water (AAIW), associated with a much smaller export and outgassing. The differences in their export rate reflects differences in their water mass formation processes. For SAMW, two-thirds of the surface waters are provided as a result of the densification of thermocline water (TW), and upon densification this water carries with it a substantial diapycnal flux of dissolved inorganic carbon (DIC). For AAIW, principal formatin processes include buoyancy forcing and mixing, with these serving to lighten CDW. An additional important formation pathway of AAIW is through the effect of interior processing (mixing, including cabelling) that serve to densify SAMW. A quantitative evaluation of the contribution of mixing, biology and gas exchange to the DIC evolution per water mass reveals that mixing and, secondarily, gas exchange, effectively nearly balance biology on annual scales (while the latter process can be dominant at seasonal scale). The distribution of DIC in the northward flowing water at 30° S is thus primarily set by the DIC values of the water masses that are involved in the formation processes

    Ecological assessment of anthropogenic impact in marine ecosystems: The case of Bagnoli Bay

    Get PDF
    none13noPollutants alter marine systems, interfering with provisioning of ecosystem services; understanding their interaction with ecological communities is therefore critical to inform environmental management. Here we propose a joint compositional- and interaction-based analysis for ecological status assessment and apply it on the benthic communities of the Bagnoli Bay. We found that contamination differentially affects the communities’ composition in the bay, with prokaryotes influenced only by depth, and benthos not following the environmental gradient at all. This result is confirmed by analyses of the community structure, whose network structure suggest fast carbon flow and cycling, especially promoted by nematodes and polychaetes; the benthic prey/predator biomass ratio, adjusted for competition, successfully synthesise the status of predator taxa. We found demersal fish communities to separate into a deep, pelagic-like community, and two shallow communities where a shift from exclusive predators to omnivores occurs, moving from the most polluted to the least polluted sampling units. Finally, our study indicate that indices based on interspecific interactions are better indicators of environmental gradients than those defined based on species composition exclusively.embargoed_20220311Hay Mele B.; Russo L.; Crocetta F.; Gambi C.; Dell'Anno A.; Danovaro R.; Guglielmo R.; Musco L.; Patti F.P.; Riginella E.; Tangherlini M.; Ribera d'Alcala M.; D'Alelio D.Hay Mele, B.; Russo, L.; Crocetta, F.; Gambi, C.; Dell'Anno, A.; Danovaro, R.; Guglielmo, R.; Musco, L.; Patti, F. P.; Riginella, E.; Tangherlini, M.; Ribera d'Alcala, M.; D'Alelio, D

    A MSFD complementary approach for the assessment of pressures, knowledge and data gaps in Southern European Seas : the PERSEUS experience

    Get PDF
    PERSEUS project aims to identify the most relevant pressures exerted on the ecosystems of the Southern European Seas (SES), highlighting knowledge and data gaps that endanger the achievement of SES Good Environmental Status (GES) as mandated by the Marine Strategy Framework Directive (MSFD). A complementary approach has been adopted, by a meta-analysis of existing literature on pressure/impact/knowledge gaps summarized in tables related to the MSFD descriptors, discriminating open waters from coastal areas. A comparative assessment of the Initial Assessments (IAs) for five SES countries has been also independently performed. The comparison between meta-analysis results and IAs shows similarities for coastal areas only. Major knowledge gaps have been detected for the biodiversity, marine food web, marine litter and underwater noise descriptors. The meta-analysis also allowed the identification of additional research themes targeting research topics that are requested to the achievement of GES. 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license.peer-reviewe

    Rewiring and indirect effects underpin modularity reshuffling in a marine food web under environmental shifts

    Get PDF
    Species are characterized by physiological and behavioral plasticity, which is part of their response to environmental shifts. Nonetheless, the collective response of ecological communities to environmental shifts cannot be predicted from the simple sum of individual species responses, since co-existing species are deeply entangled in interaction networks, such as food webs. For these reasons, the relation between environmental forcing and the structure of food webs is an open problem in ecology. To this respect, one of the main problems in community ecology is defining the role each species plays in shaping community structure, such as by promoting the subdivision of food webs in modules—that is, aggregates composed of species that more frequently interact—which are reported as community stabilizers. In this study, we investigated the relationship between species roles and network modularity under environmental shifts in a highly resolved food web, that is, a “weighted” ecological network reproducing carbon flows among marine planktonic species. Measuring network properties and estimating weighted modularity, we show that species have distinct roles, which differentially affect modularity and mediate structural modifications, such as modules reconfiguration, induced by environmental shifts. Specifically, short-term environmental changes impact the abundance of planktonic primary producers; this affects their consumers’ behavior and cascades into the overall rearrangement of trophic links. Food web re-adjustments are both direct, through the rewiring of trophic-interaction networks, and indirect, with the reconfiguration of trophic cascades. Through such “systemic behavior,” that is, the way the food web acts as a whole, defined by the interactions among its parts, the planktonic food web undergoes a substantial rewiring while keeping almost the same global flow to upper trophic levels, and energetic hierarchy is maintained despite environmental shifts. This behavior suggests the potentially high resilience of plankton networks, such as food webs, to dramatic environmental changes, such as those provoked by global change
    corecore