11 research outputs found

    News and Views: Perspectives on Graphene and Other 2D Materials Research and Technology Investments

    Get PDF
    With the actual experimental realization of graphene samples, it became possible not only to exploit the special physical properties of graphene but also to exploit its technological applications. As the field developed, the discovery of other 2D materials occurred and this opened up access to a plethora of combinations of a large variety of electrical, optical, mechanical, and chemical properties. Now there are large investments being made around the world to develop the graphene research area and to boost graphene use in technology. Here, we discuss current research and some future prospects for this area of layered nanomaterials.Conselho Nacional de Pesquisas (Brazil) (Grant 551953/2011-0)National Science Foundation (U.S.) (Grants DMR-1004147 and DMR-1004147

    Phyllosilicates as earth-abundant layered materials for electronics and optoelectronics: Prospects and challenges in their ultrathin limit

    Full text link
    Phyllosilicate minerals are an emerging class of naturally occurring layered insulators with large bandgap energy that have gained attention from the scientific community. This class of lamellar materials has been recently explored at the ultrathin two-dimensional level due to their specific mechanical, electrical, magnetic, and optoelectronic properties, which are crucial for engineering novel devices (including heterostructures). Due to these properties, phyllosilicates minerals can be considered promising low-cost nanomaterials for future applications. In this Perspective article, we will present relevant features of these materials for their use in potential 2D-based electronic and optoelectronic applications, also discussing some of the major challenges in working with them.Comment: 29 pages, 4 figure

    Microscopy and spectroscopy analysis of carbon nanostructures in highly fertile Amazonian anthrosoils

    No full text
    The anthropogenic Amazonian soil " Terra Preta de índio" (Amazonian Dark Earth) provides a potential model for a sustainable land-use system in the humid tropics. A large amount of carbon-based materials in this soil is responsible for its high fertility over long periods of usage, and soil scientists are trying to create " Terra Preta Nova" (New Dark Earth) by adding charcoal as a soil conditioner. By applying materials science tools, including scanning and transmission electron microscopy, energy dispersive X-ray, electron energy loss spectroscopy and Raman spectroscopy, we show that these millenary carbon materials exhibit a complex morphology, with particles ranging in size from micro- to nanometers, from the core to the surface of the carbon grains. From one side, our results might elucidate how nature solved the problem of keeping high levels of ion exchange capacity in these soils. From the other side, morphology and dimensionality are the key issues in nanotechnology, and the structural aspects revealed here may help generating the Terra Preta Nova, effectively improving world agriculture and ecosystem sustainability. © 2012 Elsevier B.V

    Depth dependence of black carbon structure, elemental and microbiological composition in anthropic Amazonian dark soil

    No full text
    Terras Pretas de Índio are anthropic Amazonian soils rich in pyrogenic black carbon, which might be responsible for the soil long-term stability and high fertility. This black carbon, produced by the Indians while handling their residues, became a model material for agriculture and environment. The key question to answer for artificially reproducing the desired agricultural properties of the Terra Preta de Índio is whether the black carbon structure found today in these soils is the same as produced by the ancient Indians, or whether its structure results from long-term complex physical, chemical and biological activities in the soil. To address this question, this work investigates the depth dependence of the properties from a soil collected from the Balbina site, in Presidente Figueiredo, Amazonas State, Brazil. The black carbon structure and the soil composition are investigated, with special emphasis on the poorly studied microbiological composition (fungi, bacteria, arbuscular mycorrhizas). The comparative analysis between the properties from shallower (newer) and deeper (older) soil strata indicates that, while soil composition exhibits depth dependence, the pyrogenic black carbon structure does not. This finding suggests that this model material should be reproducible by repeating the pyrolysis conditions utilized in their production. © 2015 Elsevier B.V

    DIFFERENT PLANT BIOMASS CHARACTERIZATIONS FOR BIOCHAR PRODUCTION

    No full text
    <div><p>ABSTRACT The use of biomass for biochar production is already a reality. However, little is known about its structure and composition, mainly due to the changes occurred during the heat treatment. This information is crucial since it will have an immediate impact on the quality and applicability of the material produced. Therefore, this study aimed to analyze different biomasses, characterizing their potential for biochar production. Woods from Eucalyptus urophylla and Corymbia citriodora and coffee husk were assessed. The biomass was ground and sieved, and then stored under controlled conditions of temperature and humidity. Subsequently, the material characterizations were performed through proximate analysis, elemental analysis, thermogravimetric analysis and Fourier transform infrared spectroscopy (FTIR). In general, all biomasses presented potential to be used in the production of biochar, where low H/C and O/C ratios were found. The coffee husk has higher lignin, extractives, ash and fixed carbon contents, which certainly contributed to its greater thermal stability. The FTIR analysis showed the presence of bands related to recalcitrant chemical groups such as carboxylics and phenolics in the spectra of all biomasses. The thermogram profiles of the C. citriodora and E. urophylla wood were similar to each other, and different from that of the coffee husk, which showed higher thermal stability.</p></div

    Enhanced Mechanical Stability of Gold Nanotips through Carbon Nanocone Encapsulation

    Get PDF
    Gold is a noble metal that, in comparison with silver and copper, has the advantage of corrosion resistance. Despite its high conductivity, chemical stability and biocompatibility, gold exhibits high plasticity, which limits its applications in some nanodevices. Here, we report an experimental and theoretical study on how to attain enhanced mechanical stability of gold nanotips. The gold tips were fabricated by chemical etching and further encapsulated with carbon nanocones via nanomanipulation. Atomic force microscopy experiments were carried out to test their mechanical stability. Molecular dynamics simulations show that the encapsulated nanocone changes the strain release mechanisms at the nanoscale by blocking gold atomic sliding, redistributing the strain along the whole nanostructure. The carbon nanocones are conducting and can induce magnetism, thus opening new avenues on the exploitation of transport, mechanical and magnetic properties of gold covered by sp(2) carbon at the nanoscale.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP
    corecore