143 research outputs found

    How ownership rights over microorganisms affect infectious disease control and innovation: A root-cause analysis of barriers to data sharing as experienced by key stakeholders.

    Get PDF
    Genetic information of pathogens is an essential input for infectious disease control, public health and for research. Efficiency in preventing and responding to global outbreaks relies on timely access to such information. Still, ownership barriers stand in the way of timely sharing of genetic data from pathogens, frustrating efficient public health responses and ultimately the potential use of such resources in innovations. Under a One Health approach, stakeholders, their interests and ownership issues are manifold and need to be investigated. We interviewed key actors from governmental and non-governmental bodies to identify overlapping and conflicting interests, and the overall challenges for sharing pathogen data, to provide essential inputs to the further development of political and practical strategies for improved data sharing practices

    Prognostic factors for patients treated with abiraterone

    Get PDF
    © Cecilia Melo Alvim. This work is licensed under the Creative Commons Attribution4.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/Aim: To evaluate prostate-specific antigen response (PSAr) defined as a ≥50% decrease in PSA concentration from the pretreatment value, as a prognostic factor in patients with metastatic castration-resistant prostate cancer (mCRPC) treated with abiraterone acetate (AA). Methods: Retrospective evaluation of patients with mCRPC treated with AA. Results: 124 patients were identified. Median overall survival and progression-free survival for patients achieving PSAr versus patients without PSAr were 29.3 versus 9.7 months and 17.0 versus 5.2 months, respectively. Multivariate analysis confirmed that PSAr correlated with better overall survival (hazard ratio: 0.19; 95% CI: 0.10-0.38; p < 0.001) and progression-free survival (hazard ratio: 0.24; 95% CI: 0.14-0.41; p < 0.001). Conclusion: PSAr can be utilized as prognostic and predictive factors in mCRPC patients treated with AA.info:eu-repo/semantics/publishedVersio

    How ownership rights over microorganisms affect infectious disease control and innovation: A root-cause analysis of barriers to data sharing as experienced by key stakeholders

    Get PDF
    Background Genetic information of pathogens is an essential input for infectious disease control, public health and for research. Efficiency in preventing and responding to global outbreaks relies on timely access to such information. Still, ownership barriers stand in the way of timely sharing of genetic data from pathogens, frustrating efficient public health responses and ultimately the potential use of such resources in innovations. Under a One Health approach, stakeholders, their interests and ownership issues are manifold and need to be investigated. We interviewed key actors from governmental and non-governmental bodies to identify overlapping and conflicting interests, and the overall challenges for sharing pathogen data, to provide essential inputs to the further development of political and practical strategies for improved data sharing practices. Methods & findings To identify and prioritize barriers, 52 Key Opinion Leaders were interviewed. A root-cause analysis was performed to identify causal relations between barriers. Finally, barriers were mapped to the innovation cycle reflecting how they affect the range of surveillance, innovation, and sharing activities. Four main barrier categories were found: compliance to regulations, negative consequences, self-interest, and insufficient incentives for compliance. When grouped in sectors (research institutes, public health organizations, supra-national organizations and industry) stakeholders appear to have similar interests, more than when grouped in domains (human, veterinary and food). Considering the innovation process, most of barriers could be mapped to the initial stages of the innovation cycle as sampling and sequencing phases. These are stages of primary importance to outbreak control and public health response. A minority of barriers applied to later stages in the innovation cycle, which are of more importance to product development. Conclusion Overall, barriers are complex and entangled, due to the diversity of causal factors and their crosscutting features. Therefore, barriers must be addressed in a comprehensive and integrated manner. Stakeholders have different interests highlighting the diversity in motivations for sharing pathogen data: prioritization of public health, basic research, economic welfare and/or innovative capacity. Broad inter-sectorial discussions should start with the alignment of these interests within sectors. The improved sharing of pathogen data, especially in upstream phases of the innovation process, will generate substantial public hea

    Granulocyte-Colony Stimulating Factor-Overexpressing Mesenchymal Stem Cells Exhibit Enhanced Immunomodulatory Actions Through the Recruitment of Suppressor Cells in Experimental Chagas Disease Cardiomyopathy

    Get PDF
    Genetic modification of mesenchymal stem cells (MSCs) is a promising strategy to improve their therapeutic effects. Granulocyte-colony stimulating factor (G-CSF) is a growth factor widely used in the clinical practice with known regenerative and immunomodulatory actions, including the mobilization of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). Here we evaluated the therapeutic potential of MSCs overexpressing G-CSF (MSC_G-CSF) in a model of inflammatory cardiomyopathy due to chronic Chagas disease. C57BL/6 mice were treated with wild-type MSCs, MSC_G-CSF, or vehicle (saline) 6 months after infection with Trypanosoma cruzi. Transplantation of MSC_G-CSF caused an increase in the number of circulating leukocytes compared to wild-type MSCs. Moreover, G-CSF overexpression caused an increase in migration capacity of MSCs to the hearts of infected mice. Transplantation of either MSCs or MSC_G-CSF improved exercise capacity, when compared to saline-treated chagasic mice. MSC_G-CSF mice, however, were more potent than MSCs in reducing the number of infiltrating leukocytes and fibrosis in the heart. Similarly, MSC_G-CSF-treated mice presented significantly lower levels of inflammatory mediators, such as IFNγ, TNFα, and Tbet, with increased IL-10 production. A marked increase in the percentage of Tregs and MDSCs in the hearts of infected mice was seen after administration of MSC_G-CSF, but not MSCs. Moreover, Tregs were positive for IL-10 in the hearts of T. cruzi-infected mice. In vitro analysis showed that recombinant hG-CSF and conditioned medium of MSC_G-CSF, but not wild-type MSCs, induce chemoattraction of MDSCs in a transwell assay. Finally, MDSCs purified from hearts of MSC_G-CSF transplanted mice inhibited the proliferation of activated splenocytes in a co-culture assay. Our results demonstrate that G-CSF overexpression by MSCs potentiates their immunomodulatory effects in our model of Chagas disease and suggest that mobilization of suppressor cell populations such as Tregs and MDSCs as a promising strategy for the treatment of chronic Chagas disease. Finally, our results reinforce the therapeutic potential of genetic modification of MSCs, aiming at increasing their paracrine actions

    Inactivation Kinetics and Lethal Dose Analysis of Antimicrobial Blue Light and Photodynamic Therapy.

    Get PDF
    BACKGROUND: Photodynamic therapy (PDT) has been long used to treat localized tumors and infections. Currently, microbial inactivation data is reported presenting survival fraction averages and standard errors as discrete points instead of a continuous curve of inactivation kinetics. Standardization of this approach would allow clinical protocols to be introduced globally, instead of the piecemeal situation which currently applies. METHODS: To this end, we used a power-law function to fit inactivation kinetics and directly report values of lethal doses (LD) and a tolerance factor (T) that informs if inactivation rate varies along the irradiation procedure. A deduced formula was also tested to predict LD for any given survival fraction value. We analyzed the photoantimicrobial effect caused by red light activation of methylene blue (MB-APDT) and by blue light (BL) activation of endogenous microbial pigments against 5 clinically relevant pathogens. RESULTS: Following MB- APDT, Escherichia coli and Staphylococcus aureus cells become increasingly more tolerant to inactivation along the irradiation process (T  1). P. aeruginosa and Candida albicans present constant inactivation rate (T˜1). In contrast, all bacterial species presented similar behavior during inactivation caused by BL, i.e., continuously becoming more sensitive to blue light exposure (T > 1). CONCLUSION: The power-law function successfully fit all experimental data. Our proposed method precisely predicted LD and T values. We expect that these analytical models may contribute to more standardized methods for comparisons of photodynamic inactivation efficiencies

    The COMPARE Data Hubs

    Get PDF
    Data sharing enables research communities to exchange findings and build upon the knowledge that arises from their discoveries. Areas of public and animal health as well as food safety would benefit from rapid data sharing when it comes to emergencies. However, ethical, regulatory and institutional challenges, as well as lack of suitable platforms which provide an infrastructure for data sharing in structured formats, often lead to data not being shared or at most shared in form of supplementary materials in journal publications. Here, we describe an informatics platform that includes workflows for structured data storage, managing and pre-publication sharing of pathogen sequencing data and its analysis interpretations with relevant stakeholders

    The germline mutational landscape of BRCA1 and BRCA2 in Brazil

    Get PDF
    The detection of germline mutations in BRCA1 and BRCA2 is essential to the formulation of clinical management strategies, and in Brazil, there is limited access to these services, mainly due to the costs/availability of genetic testing. Aiming at the identification of recurrent mutations that could be included in a low-cost mutation panel, used as a first screening approach, we compiled the testing reports of 649 probands with pathogenic/likely pathogenic variants referred to 28 public and private health care centers distributed across 11 Brazilian States. Overall, 126 and 103 distinct mutations were identified in BRCA1 and BRCA2, respectively. Twenty-six novel variants were reported from both genes, and BRCA2 showed higher mutational heterogeneity. Some recurrent mutations were reported exclusively in certain geographic regions, suggesting a founder effect. Our findings confirm that there is significant molecular heterogeneity in these genes among Brazilian carriers, while also suggesting that this heterogeneity precludes the use of screening protocols that include recurrent mutation testing only. This is the first study to show that profiles of recurrent mutations may be unique to different Brazilian regions. These data should be explored in larger regional cohorts to determine if screening with a panel of recurrent mutations would be effective.This work was supported in part by grants from Barretos Cancer Hospital (FINEP - CT-INFRA, 02/2010), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, 2013/24633-2 and 2103/23277-8), Fundação de Apoio à Pesquisa do Rio Grande do Norte (FAPERN), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), Ministério da Saúde, the Breast Cancer Research Foundation (Avon grant #02-2013-044) and National Institute of Health/National Cancer Institute (grant #RC4 CA153828-01) for the Clinical Cancer Genomics Community Research Network. Support in part was provided by grants from Fundo de Incentivo a Pesquisa e Eventos (FIPE) from Hospital de Clínicas de Porto Alegre, by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, BioComputacional 3381/2013, Rede de Pesquisa em Genômica Populacional Humana), Secretaria da Saúde do Estado da Bahia (SESAB), Laboratório de Imunologia e Biologia Molecular (UFBA), INCT pra Controle do Câncer and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). RMR and PAP are recipients of CNPq Productivity Grants, and Bárbara Alemar received a grant from the same agencyinfo:eu-repo/semantics/publishedVersio

    SARS-CoV-2 uses CD4 to infect T helper lymphocytes

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent of a major global outbreak of respiratory tract disease known as Coronavirus Disease 2019 (COVID-19). SARS-CoV-2 infects mainly lungs and may cause several immune-related complications, such as lymphocytopenia and cytokine storm, which are associated with the severity of the disease and predict mortality. The mechanism by which SARS-CoV-2 infection may result in immune system dysfunction is still not fully understood. Here, we show that SARS-CoV-2 infects human CD4+ T helper cells, but not CD8+ T cells, and is present in blood and bronchoalveolar lavage T helper cells of severe COVID-19 patients. We demonstrated that SARS-CoV-2 spike glycoprotein (S) directly binds to the CD4 molecule, which in turn mediates the entry of SARS-CoV-2 in T helper cells. This leads to impaired CD4 T cell function and may cause cell death. SARS-CoV-2-infected T helper cells express higher levels of IL-10, which is associated with viral persistence and disease severity. Thus, CD4-mediated SARS-CoV-2 infection of T helper cells may contribute to a poor immune response in COVID-19 patients.</p

    SARS-CoV-2 uses CD4 to infect T helper lymphocytes

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent of a major global outbreak of respiratory tract disease known as Coronavirus Disease 2019 (COVID-19). SARS-CoV-2 infects mainly lungs and may cause several immune-related complications, such as lymphocytopenia and cytokine storm, which are associated with the severity of the disease and predict mortality. The mechanism by which SARS-CoV-2 infection may result in immune system dysfunction is still not fully understood. Here, we show that SARS-CoV-2 infects human CD4+ T helper cells, but not CD8+ T cells, and is present in blood and bronchoalveolar lavage T helper cells of severe COVID-19 patients. We demonstrated that SARS-CoV-2 spike glycoprotein (S) directly binds to the CD4 molecule, which in turn mediates the entry of SARS-CoV-2 in T helper cells. This leads to impaired CD4 T cell function and may cause cell death. SARS-CoV-2-infected T helper cells express higher levels of IL-10, which is associated with viral persistence and disease severity. Thus, CD4-mediated SARS-CoV-2 infection of T helper cells may contribute to a poor immune response in COVID-19 patients.</p
    corecore