2,876 research outputs found

    Patulin penicillia from a bottled water factory

    Get PDF
    Background The objective of this work is to assess the significance of penicillia isolated from a bottled water factory particularly in relation to mycotoxin production. The annual revenue from sales of bottled water is very large: bottled water has an image of being healthy. There has been an increase in reports of fungal contamination of bottled water and one of mycotoxin production. Patulin is known to be produced by Penicillium expansum and has been reported from P. brevicompactum. The isoepoxydon dehydrogenase (IDH) gene of the patulin metabolic pathway has been used to determine the potential for patulin production in fungi. Methods Fungi were obtained in pure culture from throughout a bottled water factory including from the bottled water and obtained in pure culture to assess where contamination may occur. P. expansum and P. brevicompactum strains were analysed for patulin by TLC and the IDH gene by the PCR. Other mycotoxins were also analysed. Results Penicillia were isolated from sites within the factory including P. expansum. In addition, P. brevicompactum was frequent. Patulin was detected from P. expansum and ambiguously from P. brevicompactum. However, the IDH gene was detected from both in some cases. Other important mycotoxins were detected from the strains. Secondary metabolites in medium used to produce biomass for DNA analysis were observed. Conclusions Fungi are capable of being present in bottled water from the manufacturing process. Important mycotoxin producers are present including patulin ones. The effect of mycotoxins on DNA analysis requires consideration. Further work is needed to determine whether the mycotoxins can be present in bottled water

    Biodegradation of chiral pharmaceuticals by an activated sludge consortium followed by a Chiral HPLC-FD

    Get PDF
    Biodegradation tends to be enantioselective in contrast to abiotic degradation and it is necessary enantioselective analytical methods to quantify the enantiomeric fraction of chiral pharmaceuticals in the environment for correct risk assessment. In this work, we developed HPLC-FD methods to follow the biodegradation of four beta-blockers: alprenolol , propranolol , metoprolol and atenolol and the antidepressant fluoxetine during 15 days in batch mode. The biodegradation assays were performed using AS from the aerated tanks of a municipal wastewater treatment plant with a singly compound supplementation and a mixture compound supplementation similar to those found in wastewater influents. Abiotic degradation in the presence of light and in the dark was evaluated. Either the low concentration or the mixture effects are situations closer to those found in the environment. The results indicate the higher degradation extents for the S-enantiomer forms, as is shown in Figure 1

    Insulin and IGF-1 improve mitochondrial function in a PI-3K/Akt-dependent manner and reduce mitochondrial generation of reactive oxygen species in Huntington’s disease knock-in striatal cells

    Get PDF
    Akt, protein kinase B; ARE, antioxidant response element; Erk, extracellular signal-regulated kinase; CBP, CREB-binding protein; CREB, cAMP response-element (CRE) binding protein; CDK, cyclin-dependent kinase; DHE, dihydroethidium; Drp1, dynamin-related protein 1 or dynamin 1-like (DNM1L); GCL, glutamate-cysteine ligase; GCLc, glutamate-cysteine catalytic subunit; GPx, glutathione peroxidase; GSH, glutathione, reduced form; GSSG, glutathione oxidized form; IGF-1, Insulin-like growth factor 1; IGF1R, insulin-like growth factor 1 receptor; IR, insulin receptor; IRS, insulin receptor substrate; H2DCFDA, 2′,7′-dichlorodihydrofluorescein diacetate; HKII, hexokinase type II; HD, Huntington’s disease; HO-1, heme oxygenase; Hsp60, heat shock 60 kDa protein 1 (chaperonin); mHtt, mutant huntingtin; mtDNA, mitochondrial DNA; MT-COII, mitochondrial-encoded cytochrome c oxidase II; mTOR, mammalian target of rapamycin; NDUFS3, NADH dehydrogenase (ubiquinone) Fe–S protein 3, 30 kDa (NADH-coenzyme Q reductase); NQO1, NAD(P)H dehydrogenase [quinone] 1; Nrf2, nuclear factor (erythroid-derived 2)-like 2; PI-3K, phosphatidylinositol 3-kinase; PGC-1α, peroxisome proliferator-activated receptor-γ coactivator 1α; ROS, reactive oxygen species; SDHA, succinate dehydrogenase complex, subunit A, flavoprotein (Fp); SOD, superoxide dismutase; Tfam, transcription factor A, mitochondrial; TMRM, tetramethylrhodamine methyl ester; Tom20, translocase of outer mitochondrial membrane 20 homolog (yeast); Tom40, translocase of outer mitochondrial membrane 40 homolog (yeast)

    Computational Predictive and Electrochemical Detection of Metabolites (CP-EDM) of Piperine

    Get PDF
    In this article, we introduce a proof-of-concept strategy, Computational Predictive and Electrochemical Detection of Metabolites (CP-EDM), to expedite the discovery of drug metabolites. The use of a bioactive natural product, piperine, that has a well-curated metabolite profile but an unpredictable computational metabolism (Biotransformer v3.0) was selected. We developed an electrochemical reaction to oxidize piperine into a range of metabolites, which were detected by LC-MS. A series of chemically plausible metabolites were predicted based on ion fragmentation patterns. These metabolites were docked into the active site of CYP3A4 using Autodock4.2. From the clustered low-energy profile of piperine in the active site, it can be inferred that the most likely metabolic position of piperine (based on intermolecular distances to the Fe-oxo active site) is the benzo[d][1,3]dioxole motif. The metabolic profile was confirmed by comparison with the literature, and the electrochemical reaction delivered plausible metabolites, vide infra, thus, demonstrating the power of the hyphenated technique of tandem electrochemical detection and computational evaluation of binding poses. Taken together, we outline a novel approach where diverse data sources are combined to predict and confirm a metabolic outcome for a bioactive structure

    Biodegradation of Beta-Blockers and Fluoxetine followed by a Chiral HPLC-FD

    Get PDF
    Despite of the massive publications concerning pharmaceuticals in the environment, the problematic related with chiral compounds and enantioselective degradation are still largely unknown [1]. Enantiomers have different interactions with enzymes, receptors and other chiral molecules, leading to different biological activities. Thus, biodegradation tends to be enantioselective in contrast to abiotic degradation. However, biodegradation studies regarding enantioselectivity on the process are scarce [2].] MATERIALS AND METHODS [Four beta-blockers: alprenolol (ALP), propranolol (PHO), metoprolol (MET) and atenolol (ATE) and the antidepressant fluoxetine (FX) were enantiomerically separated by a macrocyclic antibiotic vancomycin CSP (ASTEC Chirobiotic V 5µm) under polar organic mode phase (methanol:ethanol:triethylamine:acetic acid.50:50 v/v) and fluorescence detection for enantiomeric fraction quantification. The developed methods were established using a minimal medium inoculated with activated sludge (AS) as a matrix.] RESULTS AND DISCUSSION [The Chirobiotic VTM was able to resolve ALP and PHO as well as MET, ATE and FX in two short runs. A separation factor (α) between 1.12 and 1.34 and resolution (Rs) between 1.30 and 4.35 were obtained. The methods demonstrated to be selective and linear within the range, with detection limits between 2.5 and 10ng/mL. These methods were applied to follow the biodegradation of the target compounds. The biodegradation assays were performed using AS from a municipal WWTP and the results indicate the higher degradation extents for the S- enantiomer forms at initial concentrations tenfold above those found in the environment (10ppm and 5ppm). The same assays were performed at an initial concentration of 1ppm for a singly supplementation and at 0,5ppm for a mixture of compounds, a closer situation to the real environment.] CONCLUSIONS [To our knowledge, chromatographic enantioseparations of the mixture of ALP and PHO and the mixture of MET, FX and ATE using the Chirobiotic™ V, have not been previously reported. The feasibility of this application was confirmed by two biodegradation studies using AS, with S-form being faster degraded, showing stereoselectivity

    Chiral analysis of pesticides and drugs of environmental concern: biodegradation and enantiomeric fraction

    Get PDF
    The importance of stereochemistry for medicinal chemistry and pharmacology is well recognized and the dissimilar behavior of enantiomers is fully documented. Regarding the environment, the significance is equivalent since enantiomers of chiral organic pollutants can also differ in biodegradation processes and fate, as well as in ecotoxicity. This review comprises designed biodegradation studies of several chiral drugs and pesticides followed by enantioselective analytical methodologies to accurately measure the enantiomeric fraction (EF). The enantioselective monitoring of microcosms and laboratory-scale experiments with different environmental matrices is herein reported. Thus, this review focuses on the importance of evaluating the EF variation during biodegradation studies of chiral pharmaceuticals, drugs of abuse, and agrochemicals and has implications for the understanding of the environmental fate of chiral pollutants.info:eu-repo/semantics/publishedVersio

    m5U54 tRNA hypomodification by lack of TRMT2A drives the generation of tRNA-derived small RNAs

    Get PDF
    Transfer RNA (tRNA) molecules contain various post-transcriptional modifications that are crucial for tRNA stability, translation efficiency, and fidelity. Besides their canonical roles in translation, tRNAs also originate tRNA-derived small RNAs (tsRNAs), a class of small non-coding RNAs with regulatory functions ranging from translation regulation to gene expression control and cellular stress response. Recent evidence indicates that tsRNAs are also modified, however, the impact of tRNA epitranscriptome deregulation on tsRNAs generation is only now beginning to be uncovered. The 5-methyluridine (m5U) modification at position 54 of cytosolic tRNAs is one of the most common and conserved tRNA modifications among species. The tRNA methyltransferase TRMT2A catalyzes this modification, but its biological role remains mostly unexplored. Here, we show that TRMT2A knockdown in human cells induces m5U54 tRNA hypomodification and tsRNA formation. More specifically, m5U54 hypomodification is followed by overexpression of the ribonuclease angiogenin (ANG) that cleaves tRNAs near the anticodon, resulting in accumulation of 5′tRNA-derived stress-induced RNAs (5′tiRNAs), namely 5′tiRNA-GlyGCC and 5′tiRNA-GluCTC, among others. Additionally, transcriptomic analysis confirms that down-regulation of TRMT2A and consequently m5U54 hypomodification impacts the cellular stress response and RNA stability, which is often correlated with tiRNA generation. Accordingly, exposure to oxidative stress conditions induces TRMT2A down-regulation and tiRNA formation in mammalian cells. These results establish a link between tRNA hypomethylation and ANG-dependent tsRNAs formation and unravel m5U54 as a tRNA cleavage protective mark.publishe

    Spun biotextiles in tissue engineering and biomolecules delivery systems

    Get PDF
    Nowadays, tissue engineering is described as an interdisciplinary field that combines engineering principles and life sciences to generate implantable devices to repair, restore and/or improve functions of injured tissues. Such devices are designed to induce the interaction and integration of tissue and cells within the implantable matrices and are manufactured to meet the appropriate physical, mechanical and physiological local demands. Biodegradable constructs based on polymeric fibers are desirable for tissue engineering due to their large surface area, interconnectivity, open pore structure, and controlled mechanical strength. Additionally, biodegradable constructs are also very sought-out for biomolecule delivery systems with a target-directed action. In the present review, we explore the properties of some of the most common biodegradable polymers used in tissue engineering applications and biomolecule delivery systems and highlight their most important uses.Authors acknowledge the Portuguese Foundation for Science and Technology (FCT), FEDER funds by means of Portugal 2020 Competitive Factors Operational Program (POCI) and the Portuguese Government (OE) for funding the project PEPTEX with reference PTDC/CTM-TEX/28074/2017 (POCI-01-0145- FEDER-028074). Authors also acknowledge project UID/CTM/00264/2020 of Centre for Textile Science and Technology (2C2T), funded by national funds through FCT/MCTES
    • …
    corecore