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Abstract: In this article, we introduce a proof-of-concept strategy, Computational Predictive and 

Electrochemical Detection of Metabolites (CP-EDM), to expedite the discovery of drug metabolites. 

The use of a bioactive natural product, piperine, that has a well-curated metabolite profile but an 

unpredictable computational metabolism (Biotransformer v3.0) was selected. We developed an elec-

trochemical reaction to oxidize piperine into a range of metabolites, which were detected by LC-MS. 

A series of chemically plausible metabolites were predicted based on ion fragmentation patterns. 

These metabolites were docked into the active site of CYP3A4 using Autodock4.2. From the clus-

tered low-energy profile of piperine in the active site, it can be inferred that the most likely metabolic 

position of piperine (based on intermolecular distances to the Fe-oxo active site) is the 

benzo[d][1,3]dioxole motif. The metabolic profile was confirmed by comparison with the literature, 

and the electrochemical reaction delivered plausible metabolites, vide infra, thus, demonstrating the 

power of the hyphenated technique of tandem electrochemical detection and computational evalu-

ation of binding poses. Taken together, we outline a novel approach where diverse data sources are 

combined to predict and confirm a metabolic outcome for a bioactive structure. 

Keywords: piperine; metabolite; electrochemical; detection; predictive; CP-EDM 

 

1. Introduction 

An understanding of the major circulating metabolites that are generated from a par-

ent bioactive molecule is of critical importance in drug discovery campaigns [1]. One pow-

erful and emerging approach to detect and identify drug metabolites is the use of electro-

chemical techniques [2–14]. An alternative approach is to computationally predict via 

docking how a drug might interact with a cytochrome P450 enzyme [15–17]. However, ap-

proaches that interlink these two complementary techniques are not fully delineated at 

present. 

We have a long-standing interest in the chemistry [18] and molecular interactions 

[19] of the bioactive natural product, piperine. Piperine (molecular weight of 285 g/mol) 

is an alkaloid found in various plant species, including the Piperacea family (Piper tuber-

culatum) in the Brazilian Amazon region [20]. Piperine exhibits significant pharmacologi-

cal effects such as anti-inflammatory, anti-carcinogenic, anti-microbial, and anti-parasitic 

properties. Furthermore, piperine plays a role in enhancing the bioavailability of numer-

ous drugs by inhibiting drug-metabolizing enzymes, thereby delaying the clearance of 

these drugs [21]. 

In vivo studies in rats [22] revealed that after oral administration, piperine reached 

its highest concentration (Cmax) in serum and various organs within 6 h. Piprerine’s 
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presence remained detectable for up to 96 h post-administration, being metabolized be-

fore excretion from the organism. Piperine is a potent inhibitor of cytochrome CYP3A4 

and related familial isoforms [23,24], but to the best of our knowledge, the full biological 

mechanism by which piperine is metabolized remains unknown [25]. There is, however, 

a body of evidence of typical piperine metabolites to enable confirmation by comparison 

vida infra [26–29]. 

The CP-EDM study proposed is a hyphenated technique for computational predic-

tion and electrosynthesis to expedite the metabolic reactivity profile of bioactive mole-

cules. Electrosynthesis is a green methodology that enables the synthesis and identifica-

tion of drug metabolites based on their oxidation analytical profile (cyclic voltammetry 

analytical measurements) [4]. Related studies in chlorpromazine demonstrated that elec-

trosynthesis approaches can mimic human metabolism by generating the same metabo-

lites from in vitro/in vivo and clinical studies [30]. Understanding how drugs interact with 

the metabolizing enzyme is the key to predicting their metabolism in humans. This can be 

predicted by using computational platforms that can simulate these interactions to predict 

which enzymes are likely to metabolize a particular drug, how the drug might interact 

with heme Fe in the cytochrome enzymes, and which regions of the drug are most likely 

to undergo metabolism. The integration of electrosynthesis was employed to reveal how 

a bioactive structure metabolizes in the human body. This would could minimize time-

consuming biological studies of unsuitable compounds, thus reducing the cost of one of 

the key steps in drug development. In this study, electroanalysis via a cyclic voltammetry 

(CV) study was employed to understand the redox behavior of piperine. The information 

from the CV study was used to optimize and conduct the electrosynthesis reaction, and 

the metabolites generated are analyzed by using LC-MS alongside a computational study 

to identify the potential oxidation site of piperine for understanding and predicting the 

drug metabolite resulting from the reaction. 

CP-EDM studies offer a technique in metabolite prediction for drug development 

and hold promise in advancing toxicology research in drug development. By comparison 

with the in vitro and in vivo studies, the results may find use in predicting and identifying 

potential drug metabolites. This study aids in assessing the safety and effectiveness of the 

drug via its metabolite profile, which is vital for regulatory approval and clinical use. 

2. Results and Discussion 

2.1. Electrochemical Behavior of Piperine: Cyclic Voltammetry Studies 

Prior to the electrochemical reaction, the CV behavior of piperine was measured [31]. 

We previously showed that the voltammetric behavior of a drug molecule is inversely 

correlated to its in situ metabolic half-life [32]. Using ferrocene (Fc/Fc+) as an internal 

standard for the pseudo Ag/AgCl wire reference electrode (RE), a glassy carbon electrode 

(GCE) as the working electrode (WE), and a platinum wire as the counter electrode (CE), 

the voltammetric behavior of piperine was analysed. 

The CV profiles of piperine are shown in Figure 1. The electroanalysis procedure fol-

lowed the general procedure (see Section 3) with configuration fixed with a 0.00244 V step 

potential and a start and stop potential of 0.0 V. From inspection of Figure 1a,b, piperine 

has three oxidation events (Epa1, Epa2, and Epa3) that occur at 808 mV, 1174 mV, and 

1386 mV, respectively, and two reduction events (Epc1 and Epc2) at 877 mV and 1223 mV 

vs. Fc/Fc+. The existence of the oxidation and reduction events may correspond to the re-

dox species present in the piperine structure in biological settings. 
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Figure 1. Cyclic voltammetry behavior of piperine, GCE (WE), Pt (CE), Ag/AgCl (pseudo RE) refer-

enced to Fc/Fc+. Electrolyte: TBAPF6; solvent: MeCN. (a) Piperine CV behaviors in two different po-

tential scannings—Conditions 1: start potential = 0 Vreff; upper vertex potential = 2.30 Vreff; lower 

vertex potential = −0.10 Vreff; stop potential = 0 Vreff; number of scans = 1; ʋ: 0.20 Vs−1; Step: 0.00244 V. 

[Epa1 (Ep = 808 mV; ip = 104 µA); Epa2 (Ep = 1174 mV; ip = 141 µA); Epa3 (Ep = 1386 mV; ip = 205 µA); 

Epc1 (Ep = 866 mV; ip = 1.95 µA); Epc2 (Ep = 1223 mV; ip = 24 µA)]. Conditions 2: start potential = 0 Vreff; 

upper vertex potential = 3.00 Vreff; lower vertex potential = −0.10 Vreff; stop potential = 0 Vreff; number 

of scans = 1; ʋ: 0.20 Vs−1 ; Step: 0.00244 V. [Epa1 (Ep = 818 mV; ip = 99 µA); Epa2 (Ep = 1191 mV; ip = 136 

µA); Epa3 (Ep = 1425 mV; ip = 194 µA); Epc1 (Ep = 930 mV; ip = −0.85 µA); Epc2 (Ep = 1379 mV; ip = 20 

µA)]. (b) Effects of multiple scanning up to +2.3 V on piperine cyclic voltammetry behavior—Con-

ditions: start potential = 0 Vreff; upper vertex potential = 2.3 Vreff; lower vertex potential = −0.10 Vreff; 

stop potential = 0 Vreff; number of scans = 4; ʋ: 0.20 Vs−1; Step: 0.00244 V. [Epa1 (Ep = 820 mV; ip = 141 

µA); Epa2 (Ep = 1168 mV; ip = 193 µA); Epa3 (Ep = 1383 mV; ip = 274 µA); Epc1 (Ep = 891 mV; ip = 0.84 

µA); Epc2 (Ep = 1213 mV; ip = 30 µA); Epa4 (Ep = 1013 mV; ip = 104 µA)]. (c) Effects of multiple scanning 

up to 3.0 V on piperine cyclic voltammetry behavior—Conditions: start potential = 0 Vreff; upper 

vertex potential = 3.0 Vreff; lower vertex potential = −0.10 Vreff; stop potential = 0 Vreff; number of scans 

= 3; ʋ: 0.20 Vs−1; Step: 0.00244 V. [Epa1 (Ep = 818 mV; ip = 99 µA); Epa2 (Ep = 1203 mV; ip = 136 µA); Epa3.1 

(Ep = 1427 mV; ip = 193 µA); Epa3.2 (Ep = 1657 mV; ip = 163 µA); Epa3.3 (Ep = 1739 mV; ip = 148 µA)]. 

Changing to multiple scanning of potential waveforms provides several pieces of in-

formation, including the reversibility or irreversibility of an electrochemical reaction. To 

confirm the type of the piperine oxidation process, two different multiple scanning anal-

yses were employed, as shown in Figure 1b,c. These studies reveal the multiple features 

of piperine CVs when using different applied potentials, and the reversibility of the oxi-

dation wave depends on the reversibility of later oxidation waves. Specifically, if the oxi-

dation process generates an unstable species that degrades, all subsequent processes will 

be affected. For example, when scanned with a positive applied potential, piperine has 

three oxidation events with two return reduction waves observed. For the next scanning, 

the Epa4 occurs at 1013 mV, which details the process that generates a new chemical spe-

cies that does not appear in the first scanning and increases for the subsequent scanning, 

as shown in Figure 1b. However, if the product after oxidation in Epa3 is unstable in so-

lution, there will not be any product remaining during the return scan. In other words, 

the resulting oxidation product from Epa3 undergoes an irreversible oxidation process or 

decomposition. The irreversibility of the oxidation process appears in the multiple 
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scanning analysis up to +3.0 V, as shown in Figure 1c. The Epa3 shift to a more positive 

potential for the subsequent scanning from 1427 mV to 1657 mV to 1739 mV. This means 

new chemical intermediate species are present after the first scann, leading to the different 

CV profiles of Epa3 shown in the second and third scans. The result suggests the irrevers-

ibility of the electrochemical properties system being studied for piperine. 

Figure 2 depicts the concentration and scan rate effect of piperine CV studies. Figure 

2a shows that the peak current (ip) of piperine increases with increasing analyte concen-

tration because there are more redox-active species available to undergo oxidation at the 

electrode surface. With increasing scan rate (Figure 2b), the electrode potential changes 

more rapidly, and the rate of electron transfer reactions increases, leading to a larger peak 

current. These results are consistent with the Randles–Sevcik equation and indicate the 

diffusion-controlled redox process. In this Randles–Sevcik equation at 25 °C [33], (ip = k 

n3/2 A √𝐷𝑣 C), ip is the peak current, k is a constant of 2.69 × 105 C/mol√v, n is the number 

of electrons, A is the electrode area (cm2), D is the analytes diffusion coefficient (cm2s−1), ν 

is the rate at which the potential is swept (Vs−1), and C is concentration. 

 

Figure 2. Cyclic voltammetry behavior of piperine (scan rate and concentrations varied against Ep1). 

(a) Effects of piperine concentration on cyclic voltammetry behavior—Conditions: start potential = 

0 Vreff; upper vertex potential = 2.3 Vreff; lower vertex potential = −0.10 Vreff; stop potential = 0 Vreff; 

number of scans = 1; ʋ: 0.20 Vs−1; Step: 0.00244 V. [1.0 mM (Ep = 776 mV; ip = 56 µA); 2.5 mM (Ep = 801 

mV; ip = 72 µA); 3.0 mM (Ep = 805 mV; ip = 84 µA); 4.0 mM (Ep = 798 mV; ip = 104 µA); 4.5 mM (Ep = 

825 mV; ip = 120 µA)]. (b) Effects of piperine scan rate on cyclic voltammetry behavior—Conditions: 

start potential = 0 Vreff; upper vertex potential = 2.3 Vreff; lower vertex potential = −0.10 Vreff; stop 

potential = 0 Vreff; number of scans = 1; ʋ: 0.05–0.30 Vs−1; Step: 0.00244 V. [0.05 Vs−1 (Ep = 783 mV; ip = 

49 µA); 0.10 Vs−1 (Ep = 791 mV; ip = 71 µA); 0.15 Vs−1 (Ep = 811 mV; ip = 86 µA); 0.20 Vs−1 (Ep = 812 mV; 

ip = 104 µA); 0.25 Vs−1 (Ep = 825 mV; ip = 114 µA); 0.30 Vs−1 (Ep = 832 mV; ip = 124 µA)]. 

To determine whether the electrochemical analysis is controlled by adsorption or dif-

fusion, a scan rate study was performed using a scan rate from 0.05 to 0.30 Vs−1 with 0.05 

Vs−1 as the increment constant, as shown in Figure 2b and Table 1. The peak potential pos-

itively shifts to a higher potential from 783 to 832 mV. The diffusion coefficient increased 

with an increase in the scan rate, which means higher scan rates are suitable for detecting 

redox species [34]. A higher diffusion coefficient was achieved at 0.2 Vs−1, which means 

this sweep rate is more effective in identifying a larger number of redox species because 

it will enhance the mass transport of the electroactive species to and from the electrode 

surface. 
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Table 1. Scan rate study results analysis of the initial piperine oxidation wave (Epa1). 

Scan Rate 

(Vs−1) 

Anodic Peak 

Potential Ep1 

(mV) 

Anodic Peak 

Current Ip1 

(µA) 

Square Root of 

Scan Rate v1/2 

(V/s)1/2 

Diffusion 

Coefficient 

(10−6 cm2 s−1) 

0.05 783 49 0.224 1.0312 

0.10 791 71 0.316 1.0825 

0.15 811 86 0.387 1.0588 

0.20 812 104 0.447 1.1613 

0.25 825 114 0.500 1.1163 

0.30 832 124 0.548 1.1006 

According to Table 2, the piperine electrochemical process is dominantly controlled 

by diffusion rather than an adsorption-controlled mechanism. This can be seen from the 

square root of the scan rate v1/2 (V/s)1/2 vs. peak current (Ip1) (µA) with the regression equa-

tion of a 0.9975 that has a higher proportional linearity relationship than scan rate (mVs−1) 

vs. peak current (Ip1) with the regression equation of 0.9792. Moreover, the diffusion-con-

trolled mechanism can be identified from the slope of the Log of the scan rate (mVs−1) vs. 

the Log of the peak potential (Ep1) mV (slope: 0.03439), which is closer to 0.5 than 1. The 

electrochemical reaction of piperine is controlled by the mass transfer as the slope of the 

Log of the scan rate (mVs−1) vs. the Log of the peak current (Ip1) (µA) is close to 0.5 (slope: 

0.5230). 

Table 2. Plot of data from scan rate and concentration studies. 

No Data Plot Linear Regression 

1 Scan rate (mVs−1) vs. peak current (Ip1) 
Y = 0.2983 x + 39.13 

R2 = 0.9792 

2 Square root of scan rate v1/2 (V/s)1/2 vs. peak current (Ip1) (µA) 
Y = 234.3 x − 3.248 

R2 = 0.9975 

3 Log of scan rate (mVs−1) vs. Log of peak potential (Ep1) mV 
Y = 0.03439 x + 2.833 

R2 = 0.9401 

4 Log of scan rate (mVs−1) vs. Log of peak current (Ip1) (µA) 
Y = 0.5230 x + 0.8030 

R2 = 0.9983 

5 Scan rate (mVs−1) vs. peak potential (Ep1) mV 
Y = 0.1989 x + 774.2 

R2 = 0.9983 

6 Concentration vs. peak current (Ip1) (µA) 
Y = 18.13 x + 32.80 

R2 = 0.9585 

7 Concentration vs. peak potential (Ep1) mV 
Y = 11.07 x + 767.8 

R2 = 0.7492 

The peak potential (Ep) depends on the scan rate or concentration if the oxidation 

peak potential shifts to more positive potentials, and it is non-scan rate dependent if the 

Ep remains relatively constant as the scan rate and concentration increase. To analyze 

these relationships, the scan rate (mVs−1) vs. the peak potential (Ep1) mV and the concen-

tration vs. the peak potential (Ep1) mV were plotted. The processes are dependent on the 

scan rate and non-dependent on the concentration with the regression equation of 0.9983 

(strong correlation) and 0.7492 (weak correlation), respectively. 

2.2. A Comparison of Electrosynthesis and Hepatocyte Incubation Metabolites 

After establishing that piperine is both electrochemically active and has multiple ox-

idation events, we then employed our established protocols for Shono-type [35,36] and 

Oxa-Shono-type oxidations [37]. Piperine was reacted under electrochemical conditions, 

and the resulting series of products were analyzed by LC-MS (Scheme 1 and Figure 3). 
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Scheme 1. Electrochemical oxidation of piperine and LC−MS-identifiable metabolites. Key: Red in-

dicates Shono-type oxidation reactions, and blue indicates Oxa-Shono-type oxidation reactions. 

Using the MS fragmentation patterns derived from the LCMS analysis (Figure 3), and 

via comparison with related electrochemical [26] and hepatocyte incubation data [27], the 

tentative structures of metabolites 2, 3, 5-1, 5-2, and 6 were determined, as shown in 

Scheme 1. 

 

Figure 3. LCMS trace for the electrochemical reaction of piperine to a series of metabolites 1–10. 

It should be noted that piperine exists as a Z,Z-conjugated alkene isomer, but upon elec-

trochemical reaction, E,Z and/or Z,E-isomers form, as detected by thin-layer chromatography 

(TLC) and LC-MS analysis (see the Supplementary Materials) from a radical isomerism reac-

tion in situ. A summary of the overlap between methods (electrochemical and hepatocyte in-

cubation of piperine) and novel metabolites with this work is shown in Table 3. 
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Table 3. The comparison with previously detected piperine metabolites from tandem electrochem-

ical–LCMS detection [26], hepatocyte incubation [27], and this work. Codes in columns 2 and 3, e.g., 

C# and M#, are directly taken from the original literature assignment codes [26,27]. 

Predicted Oxidative Piperine Metabolites 
Electrochemical 

Azam et al. [26] 

Hepatocytes 

Li et al. [27] 
This work 

 

C12 M12 n.d. 

 

C4 n.d. n.d. 

 

C8 M8 n.d. 

 

n.d. M14 n.d. 

 

n.d. M19 M5-1 

 

n.d. M18 n.d. 

 

n.d. M3 n.d. 

 

C17 n.d. M6 
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GSH-adduct 

Detected 

via ortho-quinone 

n.d. M5-2 

 

n.d. n.d. M2 

 

n.d. n.d. M3 

“n.d.”—not detected. 

2.3. Molecular Docking Approaches in Understanding Piperine Metabolism 

Furthermore, other unassigned oxidative metabolites were produced in this reaction 

(see the Supplementary Materials). We next considered whether the confirmed or tenta-

tively assigned oxidation metabolites would be possible from a predictive model. To 

enable this, we employed cytochrome (CYP3A4), a pivotal protein involved in the 

metabolism of numerous drugs, while piperine acts as an inhibitor of this protein [24]. 

CYP3A4 inhibition may lead to drug–drug interactions, toxicity, and other adverse effects, 

but it can also be beneficial and enhance the therapeutic efficiency of co-administered 

pharmaceuticals that are metabolized by CYP3A4. 

The affinity energy function obtained from our docking of piperine (−8.73 kcal/mol) 

is very close to that reported in the literature (−8.55 kcal/mol), which gives added confi-

dence in the predicted pose of piperine within the active pocket of CYP3A4 (Figures 4 and 

5) [37]. 

The intermolecular distances between the clusteredlow-energy binding pose of pip-

erine (see the Supplementary Materials) and the N and Fe atoms of the heme Fe group in 

CYP3A4 are reported in Å in Figure 4. This model is indicative that the 

benzo[d][1,3]dioxole motif is more likely to engage with the heme Fe species and undergo 

an oxidation event in the body, for instance, metabolites M8, M12, M18, and M3, as de-

tected in a hepatocyte incubation [27], which evaluates both phase I (oxidative) and phase 

II (conjugation) events. M5-2 and M6 from our work demonstrate an oxidative event in this 

fragment of piperine. 

 
(a) (b) 

Figure 4. Docking of piperine into the active site of CYP3A4, resulting in the close proximity of 

piperine to (a) the closest heterocycle within porphyrin and (b) the closest interaction to the Fe atom. 

Both depictions indicate the benzo[d][1,3]dioxole motif of piperine as a predicted site for phase I 

oxidative metabolism in the body. 



Molecules 2024, 29, 2406 9 of 14 
 

 

We next considered whether the metabolites identified in our electrochemical screen 

(Scheme 1) would feasibly exist in the CYP active pocket, post-metabolic oxidation. To 

achieve this, we explored the clustered binding patterns of our piperine metabolites 

compared to piperine itself within the cytochrome (Figure 5). The findings from molecular 

docking reveal that metabolites M2 and M3 dock precisely in the same region as piperine 

with an increase in the energy score for M3 and a decrease in the energy score for M2 (as 

shown in Table S1). This suggests that upon metabolism, the M2 metabolite exhibits 

diminished affinity for the protein. 

 

Figure 5. Left—General view of docked molecules into CYP3A4 (piperine in blue, M2 in orange, M3 

in yellow, M5-1 in green, M5-2 in cyan, and M6 in black). Right—Zoomed-in region. The protein is 

a new cartoon outfit; molecules in licorice and the heme group in CPK. 

One of the highly specific interactions observed is π-π followed by the π–cation 

interaction, owing to its high level of molecular organization. These interactions are 

recognized as highly specific molecular recognition interactions in protein–ligand 

complexes, often considered complex identity interactions [38–41]. Analyzing the results 

of molecular docking (Figure 6), both metabolites M2 and M3 exhibit π-π interactions with 

the heme group of the protein. M3 presented an increase in binding affinity compared 

with piperine, while M2 presented a reduced affinity for the protein compared with 

piperine. These results strongly suggest that these piperine derivatives might act as 

protein inhibitors post-metabolism unless the decreased affinity caused M2 to vacate the 

binding site because of competition with other biological molecules. Moreover, besides 

the π-π interaction, the amino acids performed non-specific interactions with piperine, 

M2, and M3 with no hydrogen bonds presented. 
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Figure 6. Visualization of the four docking poses (piperine, M2, M3, and M6) highlighting the π-π, 

cation–π (yellow regions), and hydrogen bond interactions (dashed bonds). 

Despite M6 not binding directly at the piperine site, it still engages in a π–cation 

interaction with the iron of the heme group and forms a hydrogen bond between the 

hydroxyl group of M6 and the heme group (2.9 Å). While M6 binds to the heme group, it 

is noteworthy that the π–cation interaction is less specific than π-π interactions, and the 

metabolite does not bind to the piperine interaction site. This suggests that this metabolite 

may not have the potential to inhibit the protein. Metabolites M5-1 and M5-2 do not 

interact with the heme group in the two lowest energy poses. The only specific interaction 

observed is a hydrogen bond formed by metabolite M5-2 with R212 (2.82 Å), the other 

interactions are non-specific. Besides that, these three metabolites presented lower affinity 

to protein compared with piperine. This suggests that upon metabolism, the metabolites 

might leave the protein when in contact with other biological components. 

3. Materials and Methods 

3.1. Sample Preparation 

A solution of piperine (100 mg, 0.35 mmol) was prepared with tetrabutylammonium 

hexafluorophosphate (679 mg, 1.75 mmol) (TBAPF6) (Sigma Aldrich®, St. Louis, MO, USA) 

(analyte: electrolyte 1:5) as the supporting electrolyte in MeCN (12 mL, Sigma Aldrich®). 

3.2. Electrosynthesis of Piperine 

Electrosynthesis of piperine was performed using ElectraSyn 2.0 (IKA®, Staufen, Ger-

many). An undivided glass cell (electrochemical vial) equipped with a magnetic stirrer 

was added to the analyte solution under study. Two glassy carbon electrodes (IKA®, di-

mensions (W × H × D = 8 × 52.5 × 2 mm)), as the working electrode (WE) and the counter 

electrode (CE), were inserted into the solution at a distance of approximately 0.5 cm from 

each other. Before the experiment, the electrodes were rinsed with double distilled, deion-

ized water, followed by the MeCN used in this study, and allowed to dry prior to the 

experiment. A fixed current (0.5 mA, 2.25 V maximum) was passed through the solution 
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until the desired charge (Q) was transferred (1.33 Fmol−1). The electrolysis product was 

analyzed and monitored using TLC (SiO2, eluent—Toluene: EtOAc—3:2). 

3.3. Purification and Analysis of Piperine Metabolites 

Piperine metabolites were purified by flash column chromatography Biotage® 

Isolera™ Systems (Uppsala, Sweden). DCM 100% was used to remove electrolytes from 

the compound mixture or by recrystallization of TBAPF6 using methanol, and the solvent 

combination (SiO2, eluent—DCM: isopropanol—98:2) was used to afford the title com-

pound. The product was dissolved in CDCl3 (0.6 mL) with a tetramethylsilane (TMS) ref-

erence, and 1H and 13C NMR spectra were obtained. 

3.4. Cyclic Voltammetry Procedure 

All voltammetry studies were performed using an Autolab potentiostat galvanostat 

(PGSTAT 100 N, Utrecht, The Netherlands), and CV staircase settings were controlled by 

Autolab Nova 2.0 software. The CV experiments referenced ferrocene (Fc/Fc+) as an inter-

nal standard. An undivided glass cell (electrochemical cell) equipped with a glassy carbon 

electrode (GCE BASI® (West Lafayette, IN, USA) MF-2012, geometric area 0.071 cm2 3.0 

mm diameter electrode disk of GCE material) as the working electrode, and a platinum 

wire (Sigma Aldrich® 0.5 mm diameter) was used as a counter electrode (CE). An Ag/AgCl 

pseudo reference wire was used as the reference electrode (RE). To this electrochemical 

setup, the corresponding samples to be analyzed were added. The scan rates were varied 

using Autolab Nova 2.0 software. Before each experiment, the GCE was manually pol-

ished with 1.0-micron liquid diamond type K (Kemet, Maidstone, UK) on a smooth velvet 

polishing pad. The electrodes were rinsed with double-distilled, deionized water, fol-

lowed by the MeCN solvent used in this study, and allowed to dry prior to the experiment. 

All CV data were exported to an Excel file and processed using Microsoft Excel® version 

16.69.1. The linear regression equations were calculated by the least square method using 

Microsoft Excel® version 16.69.1.6. Data visualizations were presented using Prism 10. 

3.5. Recrystallization of TBAPF6 

The reaction mixture in MeCN was transferred into a round bottom flask, and the 

solvent was evaporated using a rotary evaporator. Methanol (5 mL) was added to dissolve 

the crude and cooled overnight in the fridge (0 °C). Crystals of TBAPF6 were collected 

either by filtration or using a Pasteur pipette to collect and separate the filtrate containing 

a mixture of piperine metabolites. 

3.6. LCMS Analysis of Piperine Metabolites 

Chromatographic separation was carried out using a Waters Acquity SQD2 LC-MS 

with UPLC consisting of a quaternary pump, autosampler, column compartment, online 

degasser, and diode-array detector. The chromatographical separation was conducted on 

an Acquity UPLC BEH C18 column (Waters, Milford, MA, USA; 2.1 × 50 mm, i.d., 1.7 µm) 

maintained at a temperature of 40 °C. The mobile phase, consisting of 0.1% formic acid in 

water (A) and acetonitrile (B), was delivered at a flow rate of 0.4 mL/min. The gradient 

elution program was optimized as follows: 15% B at 0–1min, 15–30% B at 1–5 min, 30–55% 

B at 5–10 min, 55–90% B at 10–13 min, and 15% B at 13–15 min. The diode-array detector 

was set at a range of 190–400 nm. Mass detection was carried out on a Waters SQD2 elec-

trospray ionization, single quadrupole mass spectrometer equipped with positive and 

negative electrospray ionization (ESI) sources. The source conditions were optimized as 

follows: spray voltage, 3.0 kV; sheath gas (N2) flow rate, 30 arbitrary units (arb); auxiliary 

gas (N2) flow rate, 10 arb; and capillary temperature, 300 °C. Full mass spectra were rec-

orded from m/z 120 to 750 in centroid mode. All the operations and the post-data pro-

cessing were controlled by MassLynx 4.1 SCN855 software. 
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3.7. Docking Procedures 

The molecular piperine and metabolite structures were optimized by ab initio calcu-

lation. The calculations were performed using the Gamess2018 quantum mechanics pack-

age with Hartree–Fock (HF) formalism and functional density theory (DFT) following the 

same method as our previous work [42]. Briefly, 6-31+G (d, p) was used as the first set of 

bases followed by a structure refinement with the set of bases 6-311+G(2d,2p) and B3LYP 

functional. The protein structure was obtained from PDB 1TQN and prepared following 

the same method as our previous work [38]. AutoDock tools 1.5.4 was used to prepare the 

protein, adding polar hydrogen bonds and Gasteiger charges. A grid box was built to ex-

plore the whole protein (blind docking) with the grid box dimensions as 126 × 126 × 126 

points with a spacing of 0.458 Å and centered at x = −19.213, y = −23.825, and z = −14.03. 

The protein binding sites were investigated with autodock4.2 using the Lamarckian Ge-

netic Algorithm (LGA) in a total of 100 different conformations. The final poses were se-

lected among the most negative energies. AutoDock tools 1.5.4 was used for pi–pi stacking 

analysis. 

4. Conclusions 

In summary, we have disclosed a direct electrochemical analysis and reaction of 

piperine and identified a series of chemically plausible metabolites. Furthermore, 

predictive modeling of piperine identified the most likely region of the molecule to 

undergo oxidation in the body. Analysis of the piperine metabolite binding pose within 

the active heme Fe pocket of CYP3A4 revealed potential molecules that may lead to the 

inhibitive activity of piperine reported. Taken together, we have shown an approach that 

integrates computational docking, electrochemical reaction, and analytical techniques to 

predict the likelihood of metabolites in a challenging example. The CP-EDM technique 

may find use in a range of drug discovery endeavors to expedite the prediction and 

analytical aspects of drug metabolism. 
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