52 research outputs found

    Diversity and evolution of Amazonian birds : implications for conservation and biogeography

    Get PDF
    Amazonia has been a focus of interest since the early days of biogeography as an intrinsically complex and extremely diverse region. This region comprises an intricate mosaic that includes diverse types of forest formations, flooded environments and open vegetation. Increased knowledge about the distribution of species in Amazonia has led to the recognition of complex biogeographic patterns. The confrontation of these biogeographic patterns with information on the geological and climatic history of the region has generated several hypotheses dedicated to explain the origin of the biological diversity. Genomic information, coupled with knowledge of Earth's history, especially the evolution of the Amazonian landscape. presents fascinating possibilities for understanding the mechanisms that govern the origin and maintenance of diversity patterns in one of the most diverse regions of the world. For this we will increasingly need more intense and coordinated interactions between researchers studying biotic diversification and the evolution of landscapes. From the interaction between these two fields of knowledge that are in full development, an increasingly detailed understanding of the historical mechanisms related to the origin of the species will surely arise.Peer reviewe

    Recent population differentiation in the habitat specialist Glossy Antshrike (Aves: Thamnophilidae) across Amazonian seasonally flooded forests

    Get PDF
    We assessed population structure and the spatio-temporal pattern of diversification in the Glossy Antshrike Sakesphorus luctuosus (Aves, Thamnophilidae) to understand the processes shaping the evolutionary history of Amazonian floodplains and address unresolved taxonomic controversies surrounding its species limits. By targeting ultraconserved elements (UCEs) from 32 specimens of S. luctuosus, we identified independent lineages and estimated their differentiation, divergence times, and migration rates. We also estimated current and past demographic histories for each recovered lineage. We found evidence confirming that S. luctuosus consists of a single species, comprising at least four populations, with some highly admixed individuals and overall similar levels of migration between populations. We confirmed the differentiation of the Araguaia River basin population (S. l. araguayae) and gathered circumstantial evidence indicating that the taxon S. hagmanni may represent a highly introgressed population between three distinct phylogroups of S. luctuosus. Divergences between populations occurred during the last 1.2 mya. Signs of population expansions were detected for populations attributed to subspecies S. l. luctuosus, but not for the S. l. araguayae population. Our results support that S. luctuosus has had a complex population history, resulting from a high dependence on southeastern "clear water" seasonally flooded habitats and their availability through time. Spatial and demographic expansions toward the western "white water" flooded forests might be related to recent changes in connectivity and availability of these habitats. Our study reinforces the view that isolation due to absence of suitable habitat has been an important driver of population differentiation within Amazonian flooded forests, but also that differences between varzeas ("white water" floodplains, mostly in southwestern Amazonia) and igapos ("clear water" floodplains, especially located in the east) should be further explored as drivers of micro-evolution for terrestrial species.Peer reviewe

    Habitat association predicts genetic diversity and population divergence in amazonian birds

    Get PDF
    © 2017 by The University of Chicago. The ecological traits of organisms may predict their genetic diversity and population genetic structure and mediate the action of evolutionary processes important for speciation and adaptation. Making these ecological-evolutionary links is difficult because it requires comparable genetic estimates from many species with differing ecologies. In Amazonian birds, habitat association is an important component of ecological diversity. Here, we examine the link between habitat association and genetic parameters using 20 pairs of closely related Amazonian bird species in which one member of the pair occurs primarily in forest edge and floodplains and the other occurs in upland forest interior. We use standardized geographic sampling and data from 2,416 genomic markers to estimate genetic diversity, population genetic structure, and statistics reflecting demographic and evolutionary processes. We find that species of upland forest have greater genetic diversity and divergence across the landscape as well as signatures of older histories and less gene flow than floodplain species. Our results reveal that species ecology in the form of habitat association is an important predictor of genetic diversity and population divergence and suggest that differences in diversity between floodplain and upland avifaunas in the Amazon may be driven by differences in the demographic and evolutionary processes at work in the two habitats

    Biogeography and diversification of Rhegmatorhina (Aves: Thamnophilidae): Implications for the evolution of Amazonian landscapes during the Quaternary

    Get PDF
    © 2018 John Wiley & Sons Ltd Aim: To test the importance of alternative diversification drivers and biogeographical processes for the evolution of Amazonian upland forest birds through a densely sampled analysis of diversification of the endemic Amazonian genus Rhegmatorhina at multiple taxonomic and temporal scales. Location: Amazonia. Taxon: Antbirds (Thamnophilidae). Methods: We sequenced four mtDNA and nuclear gene regions of 120 individuals from 50 localities representing all recognized species and subspecies of the genus. We performed molecular phylogenetic analyses using both gene tree and species tree methods, molecular dating analysis and estimated population demographic history and gene flow. Results: Dense sampling throughout the distribution of Rhegmatorhina revealed that the main Amazonian rivers delimit the geographic distribution of taxa as inferred from mtDNA lineages. Molecular phylogenetic analyses resulted in a strongly supported phylogenetic hypothesis for the genus, with two main clades currently separated by the Madeira River. Molecular dating analysis indicated diversification during the Quaternary. Reconstruction of recent demographic history of populations revealed a trend for population expansion in eastern Amazonia and stability in the west. Estimates of gene flow corroborate the possibility that migration after divergence had some influence on the current patterns of diversity. Main Conclusions: Based on broad-scale sampling, a clarification of taxonomic boundaries, and strongly supported phylogenetic relationships, we confirm that, first, mitochondrial lineages within this upland forest Amazonian bird genus agree with spatial patterns known for decades based on phenotypes, and second, that most lineages are geographically delimited by the large Amazonian rivers. The association between past demographic changes related to palaeoclimatic cycles and the historically varying strength and size of rivers as barriers to dispersal may be the path to the answer to the long-standing question of identifying the main drivers of Amazonian diversification

    Diversification history in the Dendrocincla fuliginosa complex (Aves: Dendrocolaptidae): insights from broad geographic sampling

    Get PDF
    Dendrocincla woodcreepers are ant-following birds widespread throughout tropical America. Species in the genus are widely distributed and show little phenotypic variation. Notwithstanding, several subspecies have been described, but the validity of some of these taxa and the boundaries among them have been discussed for decades. Recent genetic evidence based on limited sampling has pointed to the paraphyly of D. fuliginosa, showing that its subspecies constitute a complex that also includes D. anabatina and D. turdina. In this study we sequenced nuclear and mitochondrial markers for over two hundred individuals belonging to the D. fuliginosa complex to recover phylogenetic relationships, describe intraspecific genetic diversity and provide historical biogeographic scenarios of diversification. Our results corroborate the paraphyly of D. fuliginosa, with D. turdina and D. anabatina nested within its recognized subspecies. Recovered genetic lineages roughly match the distributions of described subspecies and congruence among phylogenetic structure, phenotypic diagnosis and distribution limits were used to discuss current systematics and taxonomy within the complex, with special attention to Northern South America. Our data suggest the origin of the complex in western Amazonia, associated with the establishment of upland forests in the area during the early Pliocene. Paleoclimatic cycles and river rearrangements during the Pleistocene could have, at different times, both facilitated dispersal across large Amazonian rivers and the Andes and isolated populations, likely playing an important role in differentiation of extant species. Previously described hybridization in the headwaters of the Tapajós river represents a secondary contact of non-sister lineages that cannot be used to test the role of the river as primary source of diversification. Based on comparisons of D. fuliginosa with closely related understory upland forest taxa, we suggest that differential habitat use could influence diversification processes in a historically changing landscape, and should be considered for proposing general mechanisms of diversification.Peer reviewe

    Optimization of bioactive compound’s extraction conditions from beetroot by means of artificial neural networks (ANN)

    Get PDF
    The present work used an artificial neural network (ANN) model to correlate beetroot extraction conditions with total phenolic compounds (TPC), anthocyanins (ANT) and antioxidant activity (AOA). The input variables were extraction time, type of solvent, solvent volume/sample mass (VMR = volume to mass ratio) and order of extraction. The ANN models produced showed very good accuracy (R>94%), being suitable for data mining using weight analysis techniques. The experiments involved variable conditions: solvents (methanol, ethanol: water and acetone: water), extraction times (15 and 60 min), VMR (5, 10 and 20), order of extract (3 sequential extractions). The TPC were evaluated by the Folin-Ciocalteu method, ANT by the SO 2 bleaching method and AOA following the ABTS method. The experimental results showed that the extracting solutions used in this study exhibited similar extraction efficiency for TPC, but not for AOA. Also, the results allowed concluding that a higher VMR originated extracts with higher amounts of TPC and AOA.info:eu-repo/semantics/publishedVersio

    River network rearrangements promote speciation in lowland Amazonian birds

    Get PDF
    Large Amazonian rivers impede dispersal for many species, but lowland river networks frequently rearrange, thereby altering the location and effectiveness of river barriers through time. These rearrangements may promote biotic diversification by facilitating episodic allopatry and secondary contact among populations. We sequenced genome-wide markers to evaluate the histories of divergence and introgression in six Amazonian avian species complexes. We first tested the assumption that rivers are barriers for these taxa and found that even relatively small rivers facilitate divergence. We then tested whether species diverged with gene flow and recovered reticulate histories for all species, including one potential case of hybrid speciation. Our results support the hypothesis that river rearrangements promote speciation and reveal that many rainforest taxa are micro-endemic, unrecognized, and thus threatened with imminent extinction. We propose that Amazonian hyper-diversity originates partly from fine-scale barrier displacement processes-including river dynamics-which allow small populations to differentiate and disperse into secondary contact.Peer reviewe

    Phylogenomics of manakins (Aves: Pipridae) using alternative locus filtering strategies based on informativeness

    Get PDF
    Target capture sequencing effectively generates molecular marker arrays useful for molecular systematics. These extensive data sets are advantageous where previous studies using a few loci have failed to resolve relationships confidently. Moreover, target capture is well-suited to fragmented source DNA, allowing data collection from species that lack fresh tissues. Herein we use target capture to generate data for a phylogeny of the avian family Pipridae (manakins), a group that has been the subject of many behavioral and ecological studies. Most manakin species feature lek mating systems, where males exhibit complex behavioral displays including mechanical and vocal sounds, coordinated movements of multiple males, and high speed movements. We analyzed thousands of ultraconserved element (UCE) loci along with a smaller number of coding exons and their flanking regions from all but one species of Pipridae. We examined three different methods of phylogenetic estimation (concatenation and two multispecies coalescent methods). Phylogenetic inferences using UCE data yielded strongly supported estimates of phylogeny regardless of analytical method. Exon probes had limited capability to capture sequence data and resulted in phylogeny estimates with reduced support and modest topological differences relative to the UCE trees, although these conflicts had limited support. Two genera were paraphyletic among all analyses and data sets, with Antilophia nested within Chiroxiphia and Tyranneutes nested within Neopelma. The Chiroxiphia-Antilophia Glade was an exception to the generally high support we observed; the topology of this Glade differed among analyses, even those based on UCE data. To further explore relationships within this group, we employed two filtering strategies to remove low-information loci. Those analyses resulted in distinct topologies, suggesting that the relationships we identified within Chiroxiphia-Antilophia should be interpreted with caution. Despite the existence of a few continuing uncertainties, our analyses resulted in a robust phylogenetic hypothesis of the family Pipridae that provides a comparative framework for future ecomorphological and behavioral studies.Peer reviewe

    Recent divergence and lack of shared phylogeographic history characterize the diversification of neotropical savanna birds

    Get PDF
    Aim Neotropical savanna birds occur north and south of, but mostly not in the Amazon Basin, except for a few isolated savanna patches. Here, we investigate the phylogeography of 23 taxa of Neotropical savanna birds co-distributed across multiple isolated savanna patches to assess to what extent these species have a shared history of spatial diversification. We explore the role of the forested Amazon Basin as a vicariant barrier separating northern and southern populations, particularly focusing on the role of the coastal savannas of Amapa as a potential corridor of gene flow between northern and southern populations. Location Neotropical savannas. Taxon Aves. Method We employ 775 mtDNA samples of 24 co-distributed savanna bird taxa from all major savanna patches in South America to infer phylogeographic patterns. For this purpose, we use 24 genomic samples (UCEs) of a subset of 12 taxa in addition to the mtDNA samples to estimate timing of divergence across the Amazon Basin. We use phylogeographic concordance factors (PCF) to assess the level of phylogeographic congruence across co-distributed taxa. Finally, we assess to which level physical distance drives genetic structuring by estimating isolation-by-distance (IBD) effects. Results We find that although the study taxa generally do not share similar diversification patterns geographically, many have at least two distinct genetic groups, one north and one south of the Amazon Basin, that have only recently diverged. The timing of divergence between both areas is generally centered in the late Pleistocene, but somewhat variable, indicating there is no single vicariant event responsible for driving diversification. Main conclusions Variability in divergence times indicates that landscape processes have not led to shared phylogeographic responses, which indicates a relatively minor role for vicariance. Shallow divergences suggest that Neotropical grassland habitats may have recently been more connected or that gene flow has played an important role. We did not find evidence of a single dominant corridor of dispersal between savannas north and south of the forested Amazon Basin.Peer reviewe
    corecore