
Anais da Academia Brasileira de Ciências (2019) 91(Suppl. 3): e20190218 
(Annals of the Brazilian Academy of Sciences)
Printed version ISSN 0001-3765 / Online version ISSN 1678-2690
http://dx.doi.org/10.1590/0001-3765201920190218
www.scielo.br/aabc  |  www.fb.com/aabcjournal

An Acad Bras Cienc (2019) 91(Suppl. 3)BIOlOgICAl SCIeNCeS

Diversity and evolution of Amazonian birds: implications 
for conservation and biogeography

CAMILA C. RIBAS1 and ALEXANDRE ALEIXO2

1Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, 
Av. André Araújo, 2936, 69060-001 Manaus, AM, Brazil

2Finnish Museum of Natural History, University of Helsinki, P.O. Box 17, 00014, Helsinki, Finland

Manuscript received on February 21, 2019; accepted for publication on May 12, 2019

How to cite: RIBAS CC AND AleIXO A. 2019. Diversity and evolution of Amazonian birds: implications for 
conservation and biogeography. An Acad Bras Cienc 91: e20190218. DOI 10.1590/0001-3765201920190218.

Abstract: Amazonia has been a focus of interest since the early days of biogeography as an intrinsically 
complex and extremely diverse region. This region comprises an intricate mosaic that includes diverse 
types of forest formations, flooded environments and open vegetation. Increased knowledge about the 
distribution of species in Amazonia has led to the recognition of complex biogeographic patterns. The 
confrontation of these biogeographic patterns with information on the geological and climatic history of 
the region has generated several hypotheses dedicated to explain the origin of the biological diversity. 
genomic information, coupled with knowledge of earth’s history, especially the evolution of the 
Amazonian landscape, presents fascinating possibilities for understanding the mechanisms that govern 
the origin and maintenance of diversity patterns in one of the most diverse regions of the world. For this 
we will increasingly need more intense and coordinated interactions between researchers studying biotic 
diversification and the evolution of landscapes. From the interaction between these two fields of knowledge 
that are in full development, an increasingly detailed understanding of the historical mechanisms related to 
the origin of the species will surely arise.
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INTRODUCTION

Amazonia has been a focus of interest since the early 
days of biogeography as an intrinsically complex 
and extremely diverse region (Wallace 1852, Haffer 
1969). This region comprises an intricate mosaic 
that includes diverse types of forest formations, 
flooded environments and open vegetation (Cohn-
Haft et al. 2007) (Figure 1). Increased knowledge 

about the distribution of species in Amazonia has 
led to the recognition of complex biogeographic 
patterns (Antonnelli et al. 2010, Ribas et al. 2012, 
Smith et al. 2014, Naka and Brumfield 2018). The 
confrontation of these biogeographic patterns with 
information on the geological and climatic history 
of the region has generated several hypotheses 
dedicated to explain the origin of the biological 
diversity (reviews in Haffer 2008 and Leite and 
Rogers 2013).

Since the proposition of these hypotheses, 
much knowledge has been accumulated, both 
with respect to biogeographic patterns (inter and 
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intra-specific), and the evolution of Amazonian 
landscapes. In general, one can identify two main 
themes in Amazonian biogeography in which the 
accumulation of paleo-environmental knowledge 
has allowed the formulation and testing of 
hypotheses in an increasingly detailed way: the 
uplift of the Andes and its influence on the evolution 
and reconfiguration of the drainage system; and 
climatic oscillations due to glacial cycles during the 
Quaternary (Baker et al. 2014). Today it is clear that 
these histories are neither spatially or temporally 
independent, and despite many uncertainties, the 
association between biological and geological data 
has decisively helped to elucidate the relationship 
between environmental history and the origin of 
diversity in Amazonia (Baker et al. 2014). It is 
also clear that forest environments associated with 
different degrees of flooding (Figure 1) have had 
very different histories, as they respond differently 
to drainage evolution and paleoclimatic change 
(Harvey et al. 2017, Thom et al. 2018, Ribas et al. 
2018).

The Quaternary climatic oscillations (2.6 Ma 
to the present) are traditionally associated with 
forest refuges, as proposed by Haffer (1969). 
Drainage evolution, on the other hand, is generally 
associated with Miocene events (23 to 5 Ma), 

when the main phase of Andean uplift would have 
occurred (Hoorn et al. 2010, but see discussion in 
Baker et al. 2014). Due to this apparent temporal 
segregation of geological events, for a long time 
tests of diversification hypotheses have been 
based on dating the divergences to determine their 
causes: diversification in the Pleistocene would be 
associated with refuges while diversification in the 
Miocene would be associated to drainage evolution 
(Rull 2014). Meanwhile, the lack of simple and 
straightforward congruence among the different 
groups led to an alternative interpretation of a 
weak association between environmental history 
and biotic diversification in Amazonia (Smith et 
al. 2014).

However, the analytical approach needs to 
become more sophisticated (Papadopoulou and 
Knowles 2016). The accumulation of knowledge 
about the evolution of the Amazonian landscapes 
shows that different forces, initially associated 
with different hypotheses (eg. refuges, rivers), 
often considered as alternative, acted together 
spatially and temporally (Baker et al. 2014, Weir 
et al. 2015). In addition, environmental history 
has increasingly been shown to be complex. The 
climate of Amazonia did not vary uniformly during 
glacial cycles (Cheng et al. 2013, Wang et al. 2017), 

Figure 1 - Distribution of tree cover across the Amazon basin. (a) Floodplains and (b) uplands separated by the wetlands’ mask 
(Hess et al. 2015). Figure from Flores et al. (2017).
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and the response of forest and open formations to 
these oscillations is still much debated and poorly 
understood (Mayle et al. 2004, Cowling et al. 2001, 
Anhuf et al. 2006).

 Most debates concerning the recent evolution 
of the Amazonian drainage have focused on the 
establishment of the transcontinental system, which 
has been suggested as the main driver of the onset 
of the Terra Firme formation in western Amazonian 
lowlands. A mid-Miocene age (9.4 to 9.0 Ma) for 
the onset of the trans-Amazon drainage has been 
linked to the period of decreasing deposition of 
the Solimões Formation (Solimões Fm) in western 
Amazonia and increased sedimentation rates at 
the Amazon Fan (Hoorn et al. 2010). However, 
the age of the upper Solimões Fm is still debated, 
and paleontological data suggest a late Miocene to 
early Pliocene age for the formation of the modern 
Amazon River (latrubesse et al. 2010). In contrast, 
evidences from different proxies for defining the ages 
of the sedimentary deposits that overlap different 
areas of western and central Amazonia suggest 
younger ages for the establishment of the modern 
fluvial system, as Plio-Pleistocene (Nogueira et al. 
2013) and mid to late Pleistocene (Rossetti et al. 
2015). Recently, an alternative paleogeographic 
scenario suggests that the development of the 
modern drainage took place in steps since the late 
Oligocene-early Miocene until the Quaternary and 
not as a single event (van Soelen et al. 2017, Pupim 
et al. 2019). The recent development of research in 
sedimentology and paleoclimatology has provided 
increasingly detailed data, making possible a more 
specific association between landscape evolution 
and the spatial distribution of genetic diversity in 
the organisms that currently occupy the different 
environments (Figure 2) (Baker et al. 2014). 
Parallel to the advances in these areas of knowledge, 
significant advances in analytical methods in 
molecular phylogeny and phylogeography were 
also observed, making it possible to test these more 
detailed and complex scenarios (Toews et al. 2016).

Molecular phylogenetic and phylogeographic 
studies of groups for which taxonomy and sampling 
in Amazonia are better developed, as in birds and 
primates but also some groups of insects, frogs and 
small mammals, have repeatedly indicated that 
most current Amazonian species originated during 
the Pliocene and Pleistocene (Ribas et al. 2012, 
Boubli et al. 2015, Rull 2011, garzón-Orduña et al. 
2014, Smith et al. 2014, Pavan et al. 2016, Ribas et 
al. 2018) a timing that is partially consistent with a 
role for climate oscillations due to glacial cycles. 
However, most species are older than the lgM, 
meaning that the last glacial cycle has not disrupted 
pre-existing patterns of diversity and distribution 
(Ribas et al. 2012). Also, Quaternary drier climates 
seem to have been less pronounced in western 
Amazonia (Cheng et al. 2013, Wang et al. 2017), 
where the highest species diversity is concentrated 
today. This evidence suggests that a more thorough 
understanding of landscape evolution, not strictly 
focused on the effect of precipitation changes on 
vegetation as postulated by the Refugia hypothesis, 
is needed to decipher its relationship to biotic 
diversification. However, the uncertainty about the 
timing of the evolution of the drainage system and 
its associated environments has precluded such 
integration.

INTEGRATING HISTORY AND ECOLOGY

Since the proposal of phylogeography by Avise et al. 
(1987) the idea was to seek an integration of intra- 
and inter-specific genetic variability to understand 
the continuum of variation from polymorphism 
(population genetics) to divergence (phylogeny). 
This search involves an integration between 
historical data and data on the environments in 
which individuals occur today (Figure 2).

The importance of historical and ecological 
factors for community structuring is a consensus in 
the literature. However, few studies have determined 
the relative contribution of each of these factors. 



CAMIlA C. RIBAS and AleXANDRe AleIXO DIVeRSITY AND eVOlUTION AMAZONIAN BIRDS

An Acad Bras Cienc (2019) 91(Suppl. 3) e20190218 4 | 9 

This is largely due to the lack of information on 
ecology and on the detailed patterns of occurrence 
of species (Hortal et al. 2015). Although many 
groups of organisms appear to be widely distributed 
in tropical regions, only recently studies have 
begun to document the detailed pattern of variation 
in species occurrence (Costa and Magnusson 2010) 
and the genetic structure within species, that often 
correspond to several independent evolutionary 
units (Aleixo 2004, Antonelli et al. 2010, Ribas and 
Miyaki 2004, Ribas et al. 2005, 2006, 2007, 2009, 
2012, Schultz et al. 2016).

A good understanding of the patterns of 
occurrence and abundance of species in association 
with detailed information on the patterns of niches 
and habitats occupation within each community 
are critical for the testing of ecological and 
biogeographic hypotheses. Only through an 
integrated and multidisciplinary approach can we 
understand the great diversity of factors associated 
with the origin and maintenance of the most 
diverse biome on the planet, the Amazon Forest. 
This understanding is very important not only 

from a theoretical point of view, but also to guide 
actions to conserve this megadiversity that is under 
increasing risk of destruction. Understanding the 
biogeographic patterns allows us to better estimate 
the impact of deforestation in certain regions of 
the Amazon, because it is possible to know which 
regions harbor greater diversity, or unique and 
endemic lineages, while understanding intra-
populational processes that shaped current diversity 
patterns helps us predict the consequences of 
fragmentation, future climate change and habitat 
loss.

IMPACT OF LARGE DAMS ON THE AVIFAUNA 
ASSOCIATED TO FLOODED ENVIRONMENTS

Despite being the world’s most species-diverse 
biome (Pimm et al. 2014, Jenkins et al. 2013), 
Amazonia includes a below-average proportion of 
threatened species (Vale et al. 2008). While this may 
seem an indication of resilience and robustness, 
caution is required for two main reasons: Amazonia 
currently experiences the highest absolute rate 
of forest loss (Soares-Filho et al. 2006) and the 

Figure 2 - In the phylogenetic tree (left), black ‘tubes’ represent species (i.e. the species tree), whose individuals are characterized 
by genes with different mutational histories (color lines within tubes; i.e. the gene tree). On the right, a climatic time series and 
temporal variation of a geologic feature are represented. Red circles and orange dashed lines highlight the correspondence between 
evolutionary and climatic/geologic events; gray bars represent confidence intervals for the timing of divergence (left) or the 
geologic/climatic events (right). Figure from Baker et al. (2014).
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number of species classified as threatened is likely 
to be an artifact of poor taxonomic knowledge 
(Bates and Demos 2001, Whitney and Cohn-Haft 
2014). This is especially important for the biota 
associated with flooded environments, as it is 
particularly understudied (Cohn-Haft et al. 2007) 
and the current model of hydropower development 
will focus the impact of the dam’s lakes on these 
environments by adopting the run-of the river 
model (latrubesse et al. 2017).

Surveys and meta-analyses of diversity 
patterns are dependent upon basic information of 
species delimitation. Phylogeographic studies of 
Amazonian vertebrates have often revealed more 
distinct evolutionary lineages than previously 
recognized by traditional taxonomy (e.g. Smith et 
al. 2014), and often the relationships among these 
lineages do not correspond to former generic or 
species limits (Ribas et al. 2005, 2006, 2007, 2012). 
This ‘taxonomic shortfall’ prevents meta-analyses 
based on current taxonomy from achieving an 
accurate representation of diversity patterns (Figure 
1), and consequently from inferring processes and 
defining conservation strategies (Bates and Demos 
2001, Hortal et al. 2015). 

Comparatively, birds are among the 
taxonomically better known groups of Amazonian 
organisms, even though many new species 
continue to be discovered (Whitney and Cohn-
Haft 2014). In addition, although the large-scale 
biogeography of Amazonian birds is comparatively 
well documented, there are multiple examples in 
which fine-grained patterns of diversity are being 
discovered that reflect landscape history (e.g. Ribas 
et al. 2012, d’Horta et al. 2013, Thom and Aleixo 
2015). This is particularly true for upland forest 
birds, for which multiple taxonomic reviews have 
been published (Bates and Demos 2001, Ribas et 
al. 2012, Fernandes et al. 2013). In stark contrast, 
the avifauna associated with flooded environments 
is still poorly known, with few systematic revisions 
and a prevailing impression of uniformity of the 

intraspecific diversity (Aleixo 2006, Cadena et al. 
2011). Contrary to these first impressions, recent 
detailed descriptions of phenotypic variation 
and genetic diversity within flood-plain forest 
birds have documented that there is considerable 
unrecognized intraspecific diversity, and that when 
this is accounted for, common spatial patterns of 
distribution are revealed (Cohn Haft et al. 2007, 
Canton 2014, Choueri et al. 2017, Harvey et al. 
2017, Thom et al. 2018). This evidence suggests 
that planning for hydropower generation in 
Amazonia is moving forward with poor knowledge 
about the species diversity that will be impacted 
(Figure 3).

Flooded habitat species are dependent upon 
environments created by rivers and the flooding 
cycle and their evolution are historically linked 
to the Amazonian drainage system (Moraes et al. 
2016). Current reconstructions propose that western 
Amazonia was covered by a system of wetlands 
during a large period in the last 10 Ma, and that 
the current transcontinental drainage system is 
relatively recent (latrubesse et al. 2010, Nogueira 
et al. 2013, Rossetti et al. 2015). This dynamic 
history may have had strong influence over the 
recent evolution of species adapted to flooded 
environments, which brought about changes in their 
distributions as well as possible disconnections 
between eastern and western populations. Such a 
scenario is suggested by phenotypic variation in 
several species of birds (Cohn-Haft et al. 2007) 
and has been confirmed through genomic analysis 
of parrots and passeriforms (Canton 2014, Thom 
et al. 2018). This dynamic history may also 
have resulted in distinct degrees of intraspecific 
genetic diversity, depending on how species 
have responded to the physical changes to their 
habitats. Quantifying this diversity is important for 
conservation planning (Figure 3), as populations 
with very low genetic diversity may be less capable 
of responding to environmental impacts and thus 
are more susceptible to population fragmentation 
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and extinction (Spielman, 2004). A better 
understanding of systematics and biogeography of 
Amazonian biota will be critical for any planning 
process involving developmental activities. 

MOLECULAR DATA IN BIOGEOGRAPHY

The use of molecular data has brought two important 
novelties to biogeographic studies: the possibility 
of making temporal inferences and the possibility of 
studying the recent history of populations (Carstens 
and Richards 2007). Although the molecular data 
initially led to biogeographic studies focused on 
individual groups, diminishing the importance of 
the fundamentally comparative nature of classical 
biogeography, the evolution of data collection and 
analysis methodologies is allowing for a return 
to a comparative framework (Papadopoulou and 
Knowles 2016).

In the last decade, large-scale molecular 
data collection has become much easier and 
faster (McCormack et al. 2012). Next-generation 
sequencing techniques (NgS) have recently 
introduced the possibility of sequencing many 
regions of the genome in parallel, allowing a much 
faster and cheaper sequencing of thousands of loci. 
The selection of markers in this new era of genomic 
studies is based on how to reduce the genome 
for sequencing, i.e. select the set of thousands of 
markers to be studied. This can be done through 
traditional amplification of known regions and 
subsequent sequencing in parallel; digestion of the 
genome with restriction enzymes and size selection 
of fragments to be sequenced; or by using probes 
that bind to specifi c regions of the genome leading 
to sequencing of the adjacent regions (Harvey et 
al. 2016). The aim is to sequence a large number 
of homologous regions of appropriate size for 
phylogeographic analyzes. Despite some standing 
methodological difficulties, including how to 
combine fragments to perform each analysis and 
issues related to missing data (McCormack et 
al. 2012), several studies have successfully used 
NgS data to test biogeographic hypotheses using 
probes that bind to ultra-conserved genome regions 
(Smith et al. 2014) or SNPs obtained by DNA 
fragmentation and subsequent sequencing (gBS, 
ddRAD) (Harvey and Brumfi eld 2015, Weir et al. 
2015, see review in Toews et al. 2016) (Figure 2).

This abundance of genetic information, 
coupled with the growing knowledge of earth’s 
history, especially the evolution of the Amazonian 
landscape, presents fascinating possibilities for 
understanding the mechanisms that govern the 
origin and maintenance of diversity patterns in one 
of the most diverse regions of the world (Figure 2). 
For this, we will increasingly need more intense 
and coordinated interactions between researchers 
studying biotic diversifi cation and the evolution of 
landscapes (Baker et al. 2014, Cheng et al. 2013, 
Hoorn et al. 2010, Pupim et al. 2019). From the 

Figure 3 - Flooded habitat birds (non-aquatic) species richness 
patterns of Amazonian river basins. Color scale from blue 
(low) to red (high) represent the number of species. Number 
of species based on overlapping distributions of each single 
species. green and yellow circles are location of dams. Figure 
from latrubesse et al. (2017). Amazon’s 19 sub-basins are 
labeled with abbreviations: Andean-foreland Rivers: Marañon 
(Mn), Ucayali (Uc), Napo (Np), Putumayo (Pt), Caqueta 
(Ca); Cratonic rivers: Jari (Jr), Paru (Pa), Curuapenema 
(Cu), Maricuru (Ma), Tapajós (Ta), Xingu (Xi), Trombetas 
(Tr), Negro (Ne), Uatumã (Ua), Mixe d terrain: Madeira (Md); 
lowland rivers: Jurua (Ju), Purus (Pu), Jutai (Jt), Javari (Jv).
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interaction between these two fields of knowledge 
that are in full development, an increasingly detailed 
understanding of the historical mechanisms related 
to the origin of the species will surely arise.
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